Molecular Detection of The *Ornithobacterium rhinotracheale* From Turkeys Flocks in Alexandria Governorate During 2020 – 2021

Disouky Mohamed Mourad*, Amani Abd El-Naby Hafez, Mohamed Talat Ragab, Heba El-Sebaie Farag and Hanan Saad El-Samahy

Department of Animal and Poultry Health, Division of Animal and Poultry Production, Desert Research Center, Ministry of Agriculture, 1-Mathaf ElMateria Street, Cairo, 2633759, Egypt.

*Corresponding author: dismou235@hotmail.com Received: 22/5/2023 Accepted: 26/7/2023

ABSTRACT

Ornithobacterium rhinotracheale (ORT) bacterium in poultry causes respiratory disease with reduced body weight, and lowered hatchability. The disease has higher incidence in turkey species, rapidly developing antibiotic resistance, and difficulties in its diagnosis lead to higher economic losses, drug costs, misdiagnosis. Therefore, this work aimed to follow incidence of ORT bacterium in turkeys by using Polymerase Chain Reaction (PCR) in addition to sequencing, and phylogenetic analysis. Aspirated infected nasal fluids of seventeen turkey flocks affected with sinusitis were tested using PCR method for 16S rRNA genes of ORT then seven isolates were selected for sequencing, and phylogenetic analysis, followed by Gene Bank database submission. PCR results were positive for ORT bacterium at amplicon of 625 bp fragment in 12 out of 17 investigated turkey flocks with a percent of 70.59%. On sequencing of 16S rRNA genes, the selected isolates exhibited 100% similarity with each other, and Tur/France/94 strain and 99.8% with the Egyptian strains (MG773129-Egypt-1, and MG773129-Egypt-2), Tur/Hungary/2015, Ch/USA/91, Ch/South Africa/91, and Ch/France/95. All sequenced isolates were registered on the GenBank database and accession numbers were taken as follow, MW700375, MW700376, MW700377, MW700378, MW700379, MW700380, and MW700381. The higher incidence of ORT infection in turkey flocks was indicated that ORT alone could trigger turkey sinusitis with respiratory signs, also, their similarity of 99.8% with other Egyptian ORT strains means there were variation occurred in 16S rRNA gene which might play an important role in generation of new variant ORT strains.

Key words: ORT, PCR, 16S rRNA gene, Sequencing, Turkey.

INTRODUCTION

Ornithobacterium rhinotracheale (ORT) is an economically important bacterial pathogen of turkeys and chickens worldwide, it was early isolated in Hungary, 1987 as *Pasteurella*-like organism from respiratory affected ducks, while in 1991-1992, Germany, it was identified in turkeys as bacteria-like *Riemerella anatipestifer*. Moreover, it was isolated from lungs and air sacs of broiler chickens in South Africa, 1991 and recorded as Gram-negative highly pleomorphic rods (van Beek et al., 1994).

In Egypt, Youssef and Ahmed (1996); El-Gohary (1998), El-Gohary and Awaad (1998); El-Gohary et al. (1998); El-Gohary and Sultan (1999); Abd El-
Ghany (2000) isolated ORT from broiler, turkey, and layer flocks either alone or concomitantly with other organism as well as other many studies were done on isolation, characterization, and treatment of ORT (Amal, 2002; Shihata and Ibraheem, 2004; Shahata et al., 2006; Attia, 2008; Elbestawy, 2010; Hegazy et al., 2015; Masoud et al., 2015; El-Abasy et al., 2016; Ellakany et al., 2019; Hassan et al., 2020).

Vandamme et al. (1994) described ORT bacterium as highly polymorphic Gram-negative rod, non-motile, non-spore former in family Flavobacteriaceae.

Ornithobacteriosis is a contagious disease affecting chickens and turkeys and characterized by yogurt-like fibrinous air sacculitis accompanied with consolidated lung (Hafez, 1996; Banani et al., 2001). Its virulence was increased with presence of infectious and non-infectious agents (van Empel and Hafez, 1999; Barbosa et al., 2019).

ORT was considered as a primary or secondary infection with other respiratory viral and bacterial pathogen (Welchman et al., 2013; Kursa et al., 2021).

Nearly about 18 serotypes of ORT were recovered from chickens, pigeons, turkeys, geese, ducks, and rooks. Chicken isolates were homogeneous and belonged to serotype A with a percent, 95%, while turkey isolates were heterogeneous (Rubio and Salazar, 2010). Although the successful treatment of ORT, its antibiotic resistance may be rapidly developed (Devriese et al., 2001).

Conventional phenotypic methods of isolation and identification were based for definitive diagnosis of ORT (De la Rosa-Ramos et al., 2018; Hassan et al., 2020) but there were difficulties and misdiagnosis with other bacteria including Bordetella, Haemophilus, Pasteurella, Riemerella (Hafez et al., 1993; Bragg et al., 1997) and some viruses like Pneumovirus (Marien et al., 2005).

Therefore, this study used molecular techniques to identify ORT rapidly in specimens of infra-orbital sinus fluid taken from turkey flocks affected with sinusitis, and comparing ORT isolates with previous ones in phylogenetic tree, and submitting them to Gene Bank.

MATERIALS AND METHODS

Samples collection and processing

Samples of infra-orbital sinus fluid were collected under complete aseptic condition from seventeen turkey flocks of different breeds including Balady, Bronze, and/or White Nicholas during the period from 5/2020 up to 1/2021 at different localities of Alexandria governorate. Turkeys affected with infra-orbital sinusitis, high morbidity, no mortality, reduced feed intake, and lowered body weight. Affected age ranged from 50 days to 4 months. These samples were transmitted to Central laboratory for application of PCR against the 16S rRNA gene of ORT.

DNA extraction

It performed using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH), according to manufacturers’ instructions. Briefly, DNA of samples was extracted as follow, 10 µl, proteinase K with 200 µl, lysis buffer were incubated with 200 µl, sample suspension at 56°C for 10 min. then after that 200 µl, ethanol(100%) added followed by sample washing, centrifugation, and DNA elution.

Nucleotide Primers

Metabion, Germany provided the required Primers (Table 1).

PCR reaction condition

1 µl from each primer (concentration = 20 pmol) was added to Master Mix, 12.5 µl, plus4.5 µl water, and 6 µl DNA template, Then placed in thermal cycler (Applied biosystem 2720).

Agarose gel electrophoresis

At room temperature, agarose gel (1.5%) was prepared to separate the PCR by electrophoresis, each gel slot was filled with 20 µl, PCR product of each sample as
well as ladder, 100 bp (Fermentas, Germany). The gel documentation system (Alpha Innotech, Biometra) and the computer software were used for data analysis.

Sequence and phylogenetic tree

Gel extraction kit and Perkin-Elmer V3.1 cycle Terminator were obtained to purify PCR products of selected seven ORT isolates as well as sequence reaction then Applied Biosystems 3130 genetic analyzer (HITACHI, Japan) and A BLAST® analysis (Basic Local Alignment Tool) were used for sequence analysis and identity (Altschul et al., 1990). Laser gene DNA Star version 12.1, Meg Align module created the phylogenetic tree (Thompson et al., 1994), and MEGA6, maximum likelihood, neighbor-joining, and maximum parsimony performed the phylogenetic analyses (Tamura et al., 2013).

Table (1): Target genes, Primers, and amplicon sizes:

<table>
<thead>
<tr>
<th>Target genes</th>
<th>Primers</th>
<th>Amplified segments (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORT 16S rRNA</td>
<td>F: 5'-TGGCATCGATTTAAAAATTGAAAG-3</td>
<td>625</td>
<td>Doosti et al., 2011</td>
</tr>
<tr>
<td></td>
<td>R: 5'-CATCGTTTACTGCGTGGACTAC-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

PCR Results

ORT was diagnosed in twelve out of seventeen turkey flocks suffering from infraorbital sinusitis (Table 2). Positive samples for ORT give specific band at 625 bp size (fig. 1)

Sequencing and phylogenetic analysis of ORT isolates

Partial sequences of ORT16S rRNA genes of selected seven strains (Naseria-1, Amria-K, Abees-2, Naseria-2, Maryout-1, Maryout-2, and Maryout-3) were compared with those of Asian, European, and American ORT strains. All isolates branched in the same line with Tur/France/94 strain as well as they showed 99.8% similarity with the Egyptian strains (MG773129-Egy-1, and MG773129-Egy-2), Tur/Hungary/2015, Ch/USA/91, Ch/South Africa/91, and Ch/France/95 (fig. 3). GenBank accession numbers of all selected isolates

The nucleotide and amino acid sequences of ORT 16s rRNA genes were submitted into GenBank under the accession numbers; MW700375 for isolate Naseria-1, MW700376 for isolate Amria-K, MW700377 for isolate Abees-2, MW700378 for isolate Naseria-2, MW700379 for isolate Maryout-1, MW700380 for isolate Maryout-2, MW700381 for isolate Maryout-3 (Table3).

Table (2): Incidences of ORT isolated from turkeys

<table>
<thead>
<tr>
<th>ORT negative</th>
<th>%</th>
<th>ORT positive</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/17</td>
<td>29.41%</td>
<td>12/17</td>
<td>70.59%</td>
<td>17</td>
</tr>
</tbody>
</table>
Table (3): Data and GenBank accession numbers of sequenced ORT isolates

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Identified code</th>
<th>Governorate</th>
<th>Bird species</th>
<th>Breed</th>
<th>Date</th>
<th>GenBank accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naseria-1</td>
<td>Alexandria</td>
<td>Turkey</td>
<td>Bronze</td>
<td>27/8/2020</td>
<td>MW700375</td>
</tr>
<tr>
<td>2</td>
<td>Amria-K</td>
<td></td>
<td></td>
<td>balady</td>
<td>13/6/2020</td>
<td>MW700376</td>
</tr>
<tr>
<td>3</td>
<td>Abees-2</td>
<td></td>
<td></td>
<td>Bronze</td>
<td>15/11/2020</td>
<td>MW700377</td>
</tr>
<tr>
<td>4</td>
<td>Naseria-2</td>
<td></td>
<td></td>
<td>Bronze</td>
<td>6/12/2020</td>
<td>MW700378</td>
</tr>
<tr>
<td>5</td>
<td>Maryout-1</td>
<td></td>
<td></td>
<td>Bronze</td>
<td>15/1/2021</td>
<td>MW700379</td>
</tr>
<tr>
<td>6</td>
<td>Maryout-2</td>
<td></td>
<td></td>
<td>Bronze</td>
<td>15/1/2021</td>
<td>MW700380</td>
</tr>
<tr>
<td>7</td>
<td>Maryout-3</td>
<td></td>
<td></td>
<td>Bronze</td>
<td>15/1/2021</td>
<td>MW700381</td>
</tr>
</tbody>
</table>

Figure (1). Showed lane L: Loader from 100-1000 bp lane P: Positive control. Lane N: negative control Lane 1-4, 9-12, 14-17: Positive Samples for ORT at amplicon of 625 bp. Lane 5-8, 13: Negative samples.

Figure (2). Phylogenetic tree and genetic relationships among the selected ORT isolates (indicated by red dots).
DISCUSSION

ORT infection recorded in 70.59% of investigated turkey flocks suffering from sinusitis. On sequencing of 16s rRNA genes for the selected seven ORT strains, all isolates were identical with each other and also Tur/France/94 strain, while their identity with Egyptian strains (MG773129-Egy-1, and MG773129-Egy-2). Tur/Hungary/2015, Ch/USA/91, Ch/South Africa/91, and Ch/France/95 was similar in a percent of 99.8%. These results were close to those of Hauck et al. (2015) that reported the higher ORT infection in turkeys (41%) when compared with chickens (6.9%), also, ORT infection in both chickens and turkeys was described by Karimi-Dehkordi et al. (2021) and Roussan et al. (2011). Buys (1996) showed ornithobacteriosis susceptibility was higher in Turkey followed by chicken, duck, goose, pigeon, quail, ostrich, guinea fowl, gull, partridge, pheasant, and rook. ORT was recovered from 75 broiler chicken farms in Egypt (Abd El-Ghany, 2000). Elbestawy (2010) isolated ORT bacterium from broilers in Kafr El Sheikh and El-Beheira governorates with an incidence percent, 7.27%. Amal (2002) demonstrated 5.8% ORT incidence rate in broilers, Assuit governorate. Ellakany et al. (2019) revealed ORT isolates were detected in Broilers and layers with a percent of 11.66% and closely related to Asian, European, and American strains (98%-100%). Masoud et al. (2015) showed a similarity percent of 94%-98% among the selected five broiler’s ORT strains and some Asian, and American ones. Thieme et al. (2016) when compared the results of 16S rRNA gene sequencing and multi-locus sequence typing (MLST) in 65 isolates of ORT, they demonstrated identity ranging 85.1%-100%.

CONCLUSION

In this work, the higher incidence of ORT detection was indicated ORT infection alone could trigger turkey sinusitis and respiratory diseases in turkey flocks. Their similarity of 99.8% with other Egyptian ORT strains means there were variation occurred in 16S rRNA gene which might play an important role in generation of new variant ORT strains. So that further continuous studies on molecular diagnosis and prevention/control strategy of ORT were urgently required to reduce economic losses in turkey flocks.
DECLARATIONS

Acknowledgement

Many grateful thanks to all the staffs and members of Animal and Poultry Health Department, and Maryout Research Station belonging to Desert Research Center, Ministry of Agriculture, Egypt.

Competition interest

There is no any Competing interests among the authors.

Authors’ contribution

All authors have read and approved the final manuscript; Disouky Mourad collected the samples and tabulated the data; Amani Hafez performed the laboratory analyses; Mohamed Talaat helped in sample collection; Heba El-Sebaie shared in data and laboratory analyses; Hanan El-Samahy participated in sample collection, manuscript design, writing, and revision.

Funding

This research received no external funding.

REFERENCES

Welchman, D.B., Ainsworth, H.L., Jensen, T.K., Boye, M., King, S.A., Koylass, M.S., Whatmore, A.M.,