

Journal of Current Veterinary Research

ISSN: 2636-4026

Journal home page: http://www.jcvr.journals.ekb.eg

Internal medicine & infectious disease

Antimicrobial Resistance in Bovine Mastitis Pathogens with Special Reference to Egyptian Situation: A Review

Kareem A. Elhossary¹, Ahmed Elsify², Mohamed Nayel², Akram Salama², Walid Mousa², Mai A. Dawoud³, Eman M. Sharaf¹ and Ahmed Zaghawa²*

- (1) Bacteriology, Immunology and Mycology Department, Animal Health Research Institute, Shebin EL-Kom, Menoufia (ARC), Egypt.
- (2) Department of Animal Medicine and Infectious Diseases. Faculty of Veterinary Medicine. University of Sadat City. Sadat City. Menoufia, Egypt.

*Corresponding author: ahmed.zaghawa@vet.usc.edu.eg Received: 12/1/2025
Accepted: 15/3/2025

ABSTRACT

The most problem affecting dairy cows, causing considerable financial losses, is udder inflammation. It is regarded as the most crucial and costly disease impacting the dairy industry, lowering the quality and quantity of milk. The rise of bacterial strains resistant to antibiotics makes it difficult to treat cow mastitis. An emerging problem is the rise in antibiotic resistance in various bacterial pathogens. Antimicrobial resistance is an escalating danger as new and emerging resistance mechanisms are surfacing and disseminating worldwide. Antibiotic susceptibility is a crucial instrument in managing bovine mastitis. Bovine mastitis was commonly managed with various commercial antibiotics; the regular application of antibiotics has occasionally been unsuitable for an extended period. This review outlines the antimicrobial resistance responsible for bovine mastitis, with particular emphasis on Egypt. Genetic factors identified globally in *Staphylococcus* spp., *E. coli*, and *Klebsiella*.

Keywords: Mastitis, Dairy cows, AMR, Antibiotic resistance.

1. INTRODUCTION

Various microorganisms, such as fungi and bacteria, have been associated with cow mastitis as contributing factors (Krukowski & Saba, 2003). A common issue impacting high-producing dairy cows, leading to considerable financial losses and diminishing milk's technological quality, is the udder's inflammation (Kalińska et al., 2017). Inflammation of the mammary glands parenchyma affects milk chemical and physical composition (Redistils et al., 2000). Changes in the udder's color

and texture and physical, chemical, and microbiological changes in the milk are indicators of clinical mastitis. Subclinical mastitis is characterized by an elevated somatic cell count in milk; it is diagnosed in the lab setting with specialized assays such as California mastitis test (Brennecke et al., 2021; Constable et al., 2017; Hoque et al., 2015 and Mungube et al., 2005).

S. aureus, Streptococcus agalactiae, and Mycoplasma spp., causing contagious mastitis, as well as E. coli, Enterococcus faecalis, Streptococcus

dysagalactiae, and coagulase-negative Staphylococci causing environmental mastitis (Keane et al., 2013). In recent years, much of the research in the dairy field has concentrated on managing with numerous attempts mastitis, underway to develop alternative and effective treatments (Gomes Henriques, 2016). Antibiotic susceptibility is a crucial method in managing bovine mastitis. Bovine mastitis was often managed with various commercial antibiotics; the frequent application of antibiotics has occasionally been unsuitable over an extended period. The rise of antibiotic resistance has been observed numerous bacterial pathogens (Robert et al., 2006). This review seeks to encapsulate the existing state of antimicrobial resistance found in the primary pathogens responsible for bovine mastitis, with particular emphasis on Egypt. Genetic factors are identified in Staphylococcus spp., E. coli. and Klebsiella pneumoniae worldwide.

<u>Genetic Factors Influencing</u> Resistance in Mastitis Pathogens:

Gram-Positive Microbes The primary gram-positive microorganisms cause mastitis infections belong to the Staphylococcus genus. It has been reported that Staphylococcus spp. resistant become to several antimicrobial classes, including trimethoprim, tetracyclines, aminoglycosides, macrolides, and βlactams (Wendlandt et al., 2013a; Nobrega et al., 2018b).

Resistance to β-Lactams.

The genetic foundations for resistance to the β -lactam antibiotics penicillin and methicillin vary in their genetic components and cellular locations, yet their regulatory mechanisms exhibit certain similarities. The *blaZ* gene

encodes the PC1 β-lactamase that is accountable for penicillin resistance in Staphylococci, including isolates like Staph. epidermidis, Staph. haemolyticus, or Staph. Chromogenes (Nobrega et al., 2018a; Bolte et al., 2020b). The blaZ gene is located within the transposon Tn552, a mobile genetic element that presents in the bacterial chromosome or a plasmid, and is controlled by two genes, blaR1 and blaI, organized within the blaZblaR1-blaI operon (Olsen et al., 2006; Llarrull & Mobashery, 2012) and (Blázquez et al., 2014).

Resistance against Tetracyclines.

The tetracycline resistance in staphylococcal spp. obtained from mastitis samples is mainly associated with the *tet*(K) and *tet*(L) genes, which are carried by plasmids (Enany & Alexander, 2017). These genes were identified in Staphylococci obtained from dairy farms in Switzerland (Ali & Shrief, 2016; Qu et al., 2019; Lima et al., 2020).

Resistance to Aminoglycosides.

It may be facilitated by various genes that encode for inactivating enzymes in staphylococcal spp.. The gene aphA3 phosphotransferase encodes and contributes to resistance against kanamycin, neomycin, and amikacin. In comparison, aacA-aphD encodes an acetyltransferase phosphotransferase, providing resistance to gentamicin (Schwarz et al., 2018).

Resistance genes to antibiotics in S. aureus found in Egypt.

Multiple studies were carried out on mastitis in Holstein cows to assess the susceptibility of *S. aureus* isolates to various antibiotics for identifying antibiotic-resistance genes. A total of

415 Holstein dairy cows were randomly chosen from three governorates in Egypt (Damietta, Sharkia, Dakahlia). Chosen cows were assessed for mastitis between October 2014 and June 2018. The occurrence of *S. aureus* derived from milk samples was 15.4%, with 14.3% in clinical

instances and 15.7% in subclinical instances. The molecular PCR test showed that all 16 *S. aureus* isolates (100%), whereas 15 (93.7%) had the *bla*Z gene; conversely, 8 (50%) possessed the *tet*K gene (Talaat et al., 2023).

Table 1. Incidence of *S. aureus* antibiotic resistance genes in the governorates of Damietta, Sharkia, and Dakahlia.

	Locality	Target Genes	%	Oligonucleotide primers References
		blaZ	93.7	(Bagcigil et al., 2012).
S. aureus	Damietta, Sharkia,	mecA	100	(McClure et al., 2006).
	and Dakahlia	tetK	50	(Duran et al., 2012)
		fexA	0.06	(Kehrenberg & Schwarz, 2006)

mecA: Methicillin resistance gene.

blaZ: lactams resistance gene.

Research carried out to investigate the incidence and pathogens responsible for subclinical mastitis (SCM) in North Upper Egypt (Beni-Suef, El-Fayoum, and Giza), indicating that the isolation rate in subclinical mastitis was 90.4%. The bacterial isolates most frequently

identified were *E. coli* (49.8%), *S. aureus* (44.9%) and *Streptococci* (44.1%). mecA and blaZ genes were detected in 60% and 46.7% of *S. aureus* isolates, respectively (Abed et al., 2021), employing primers listed in (table 2).

Table 2. Incidence of *S. aureus* antibiotic resistance genes in the governorates of Beni-Suef, El-Favoum, and Giza.

,	Locality	Target Genes	%	Oligonucleotide
				primers References
	Beni-Suef, El-	mecA	60	(McClure et al., 2006)
S. aureus	Fayoum and			
	Giza	blaZ	46.7	(Duran et al., 2012)

mecA: Methicillin resistance gene and blaZ: lactams resistance gene.

During the investigation of mastitis in Menoufia Governorate, Egypt, the study concentrated on its phenotypic and genotypic traits. Out of 500 lactating cows, 140 (28%) milk samples were positive for the California Mastitis Test (CMT). A sensitivity assessment of 9 antibiotics revealed resistance for penicillin

(90.69%), oxacillin (81.39%), chloramphenicol (58.14%), and tetracycline (53.48%). Furthermore, fifteen isolates were selected to identify antibiotic-resistance genes in *S. aureus* strains. The mecA gene was the most prevalent (100%), followed by blaZ gene (80%), tetK gene (66.7%), and ermB gene (40%),

whereas the vanA gene was absent (Abdeen et al., 2021).

Table 3. Incidence of *S. aureus* antibiotic resistance genes in El-Menoufia Governorate.

	Locality	Target	%	Oligonucleotide primers
		Genes		References
		mecA	100	(McClure et al., 2006)
		blaZ	80	(Duran et al., 2012)
S. aureus	Menoufiya	tetK	66.7	(Duran et al., 2012)
		ermB	40	(Schlegelova et al., 2003)
		vanA	0	(Patel et al., 1997)
			No detection	

mecA: Methicillin resistance gene, blaZ: lactams resistance gene, *tetK*: tetracycline resistance genes, *erm*B: macrolides resistance genes and *van*A: vancomycin resistance genes.

Out of the 444 cow milk samples, *S. aureus*: 296 (66.6%), *Enterococcus* spp.: 230 (51.80%), *E. coli*: 210 (47.29%), and *Streptococcus* agalactiae: 106 (23.87%) were

isolated. Resistance to antimicrobials. Through PCR, pertinent resistance genes were discovered (Youssif et al., 2021).

Table 4. Incidence of *S. aureus* antibiotic resistance genes in Fayoum Governorate

	locality	Target	%	Oligonucleotide primers
		Genes		References
		tetK	100	(Duran et al., 2012)
S. aureus	Fayoum	blaZ	100	(Duran et al., 2012)
		mecA	100	(McClure et al., 2006)

mecA: Methicillin resistance gene, blaZ: lactams resistance gene, *tetK*: tetracycline resistance genes

A total of 285 milk samples were gathered from (150 cows and 135 buffalo) maintained by small-scale farmers throughout various governorates of Egypt, such as Giza, Fayoum, and Beni-Seuf. Examination revealed that 34 (22.7%) milk samples from cows and 36 (26.7%) from

buffalo exhibited clinical mastitis. *S. aureus* were obtained 14 (41.2%) from cattle and 17 (47.2%) from buffalo. The resistance genes detected were 64.5% (ermB), 70.9% (ermC), and 9.6% (msrA) (Abd El-Razik et al., 2023).

Table 5. Incidence of *S. aureus* antibiotic resistance genes in the governorates of

Cairo, Giza, Kalyobia, Fayoum, and Kafr El-Sheikh.

	Locality	Gene	%	Oligonucleotide primers
		Target		References
		ermA	9.6	(Martineau et al., 2000)
S. aureus	Cairo, Giza, Kalyobia, Fayoum, and Kafr El-Sheikh	ermB	64.5	(Martineau et al., 2000)
		ermC	70.9	(Martineau et al., 2000)
		ermT	19.3	(Feßler et al., 2010)
		msrA	9.6	(Aktas et al., 2007)

Genetic factors contributing to resistance in mastitis-causing pathogens: E. coli and Klebsiella spp.

E. coli, which causes mastitis in cows, can lead to mastitis in cattle, especially during calving or early lactation because of the immunosuppression occurring at these times. Infections may lead to serious clinical mastitis and can occasionally recur, but they are generally of shorter duration compared to those caused by different pathogens, and many do not require treatment (Blowey & Edmondson, 2010). Klebsiella, though not often isolated, can still lead to severe clinical mastitis that results in significant inflammation and necrosis of the mammary gland (Schukken et al., 2012).

Resistance against β-Lactams.

Resistance to β -lactams is likely the most commonly observed in mastitis .β-Lactamases are enzymes that can down chemical substances containing a β-lactam ring. Numerous enzymes utilize various hydrolyzing methods and possess unique functional abilities (Bush, 2018) (EFSA, 2011). The present study has recognised CTXM, SHV, or TEM (ur Rahman et al., 2018).

The blaCTX gene has been discovered in many E. coli and Klebsiella spp. isolates associated with mastitis from various locations worldwide. Additional instances of **ESBL** identified in E. coli comprise CTX-M-1, CTX-M-2, CTX-M-3, CTX-M-14, CTX-M-55, CTX-M-96, and SHV-12 from countries such as Germany. Switzerland. Japan, France. Colombia (Geser et al., 2012; Dahmen et al., 2013; Ohnishi et al., 2013; Ali et al., 2016).

opposition, **AmpC** In cephalosporinases break down cephalosporins and cephamycins and can withstand inhibition by β-lactam inhibitors. Ultimately, produce Enterobacteriaceae that are carbapenemase capable of hydrolyzing penicillins, everv cephalosporin, **B**-lactamase and inhibitors (Papp-Wallace et al., 2010; Locatelli et al., 2010; Ahmed & Shimamoto, 2011; Dahmen et al., 2013). K. pneumoniae was the initial bacterium recognized for producing carbapenemase enzymes (Munoz-Price et al., 2013). The designation for this enzyme family stemmed from the initial K. pneumoniae carbapenemase (KPC) outbreak, occurring in *E. coli* taken from the milk of cattle affected by clinical or subclinical mastitis in India, while *K. pneumoniae* in milk samples from Pakistan's cows were found to harbour blaNDM-1 and blaoxa-48 (Ghatak et al., 2013; Chaudhry et al., 2020). The blaNDM-5 gene has been discovered in isolates from milk specimens from Algeria (Yaici et al., 2016; He et al., 2017).

Resistance to Tetracycline antibiotics.

Resistance to tetracyclines in E. coli from animals is prevalent because tetracyclines are commonly used in veterinary care. This is probably the same in *Klebsiella* spp.. The most common genes are tet(A) and tet(B), which can occur together in the same isolate (Metzger & Hogan, 2013). A recent study conducted in Jordan found that all E. coli isolates harboured tet (A) 39% and tet (D) 71 % (Ismail & Abutarbush, 2020). In China, only tet (C) was found, whereas a separate study identified only tet (A) when searching for tet (A) and tet (B) (Yu et al., 2020). In the United States, tet (C) exhibited greater prevalence a (Metzger & Hogan, 2013).

Aminoglycoside Resistance.

Resistance to aminoglycosides like neomycin, streptomycin, gentamicin, or kanamycin is common and can be developed through two primary mechanisms: target modification and enzymatic deactivation. The initial 16S RNA methylase, armA, was detected (Yu et al., 2015; He et al., 2017; Ramírez & Tolmasky, 2010).

AAC (3)-II/IV and AAC (6)-Ib, which are aminoglycoside N-acetyltransferases, are the primary acetyltransferases found in *E. coli* and typically exist as components of gene

cassettes within integrons (Poirel et al., 2018) and (Freitag et al., 2017; Saidani et al., 2018).

Quinolone resistance can result from mutation in the gyrA, gyrB, par C and parE chromosomal genes that encode gyrases and topoisomerases, respectively (Kim et al.,2011; Yang et al., 2018). Out of 92 *E. coli* isolates collected in China, 97.8% had gyrA mutations, while 95.6% exhibited gyrB mutations (Lan et al., 2020).

Resistance against Sulfonamides.

The genes associated with sulfonamide resistance are sul1, sul2, and sul3. These are carried on plasmids that can contain other antimicrobial resistance genes and are extensively spread. The genes sul1 or sul2 are frequently detected and were identified in *Klebsiella* spp. such as *K. pneumoniae* from Brazil and Canada, as well as *E. coli* from Germany, Ireland, Switzerland, or Australia (Lanz et al., 2003; Keane, 2016; Freitag et al., 2017).

Resistance against Trimethoprim

The most detected genes include dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA16, and dfrA17 (Ahmed and Shimamoto, 2011; Keane, 2016; Koovapra et al., 2016).

Antibiotic resistance genes in E. coli and Klebsiella spp. in Egypt.

It was found that 30.4% of Gramnegative bacteria harboured at least one antimicrobial resistance gene. The most frequently detected isolates were *Enterobacter cloacae* 8 (7.1%), *Klebsiella pneumoniae* 7 (6.3%), *Klebsiella oxytoca* 7 (6.3%), *E. coli* 5 (4.5%), and *Citrobacter freundii* 3 (2.7%). The gene found in the isolates

resistant to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Furthermore, the genes responsible for encoding β -lactamases, namely blaTEM, blaSHV, blaCTX-M, and blaOXA, in addition to the plasmid-mediated quinolone resistance genes qnr and aac(6)-Ib-cr were also detected (Ashraf and Tadashi 2011).

Table 6. Antibiotic resistance genes in *E. coli* and *Klebsiella* spp. in Egypt.

	locality	Target Genes	Oligonucleotide primers
			References
E. coli	Different dairy farms	blaTEM	(Ahmed et al., 2007)
and	in Egypt		
		blaSHV	
Klebsiella		floR	(Hussein et al., 2007)
spp.			
		qnrA	(Park et al., 2006)

The bacteriological evaluation of different subclinical mastitis cases revealed that the most frequently identified bacteria were *E. coli* (49.8%), *S. aureus* (44.9%),

streptococci (44.1%), and non-aureus staphylococci (NAS) (37.1%). E. coli isolate possessed the tetA gene (Abed et al., 2021).

Table 7. Incidence of *E. coli* antibiotic resistance genes in the governorates of Beni-Suef, El-Fayoum and Giza.

Suci, 21 Tuj sum uma Sizu.					
	Locality	Target Genes	%	Oligonucleotide	
				primers References	
E. coli	Beni-Suef, El-Fayoum	tetA	100	(Randall et al., 2004).	
	and Giza	sul1	100	(Ibekwe et al., 2011)	

sul1: Sulphonamides resistance gene. tetA: Tetracyclines resistance gene

This study was conducted to detect and determine the resistance genes in *E. coli* strains isolated from Friesen-Holstein cattle from different regions of Cairo Governorate. The incidence of *E.coli* (4.6%) was represented by 8 isolates/175 milk samples. The PCR

detected the presence of 4 resistance genes, sul1, mphA, aadA1 and ereA, in all tested isolates, while trimethoprim-resistant dihydrofolate reductase (dfrA) resistance gene was detected in 5 isolates only (62.5%) (El-hofy et al., 2023).

Table 8. Incl	Table 8. Incidence of E. con antibiotic resistance genes Cairo governorates				
	Locality	Target Genes	%	Oligonucleotide	
				primers References	
E. coli	Cairo	sul1	100	(Ibekwe et al., 2011)	
	Governorate	mphA	100	(Randall et al., 2004)	
		aadA1	100	(Nguyen et al., 2009)	
		ereA	100	(Nguyen et al., 2009)	
		dfrA	62.5	(Grape et al., 2007)	

Table 8. Incidence of *E. coli* antibiotic resistance genes Cairo governorates

sul1: sulphonamide resistance gene, mphA: macrolide 2 phosphotransferase gene,aadA1: aminoglycoside nucleotidyltransferase gene, ereA: Erythromycin Esterase gene and dfrA: trimethoprim resistant dihydrofolate reductase gene.

REFERENCES

Abed, A. H., Menshawy, A. M., Zeinhom, M. M., Hossain, D., Khalifa, E., Wareth, G., & Awad, M. F. (2021). Subclinical mastitis in selected bovine dairy herds in North Upper Egypt: Assessment of prevalence, causative bacterial pathogens, antimicrobial resistance and virulence-associated genes. *Microorganisms*, *9*(6), 1175.

Abdeen, E. E., Mousa, W. S., Abdel-Tawab, A. A., El-Faramawy, R., & Abo-Shama, U. H. (2021). Phenotypic, genotypic and antibiogram among Staphylococcus aureus isolated from bovine subclinical mastitis. *Pak. Vet. J*, *41*, 289-293.

Abd El-Razik, K. A., Soliman, Y. A., Fouad, E. A., Arafa, A. A., Syame, S. M., & Soror, A. H. (2023). Macrolidesresistant Staphylococcus aureus Associated with Clinical Mastitis in Cattle and Buffalo in Egypt. *Journal of Advanced Veterinary Research*, *13*(3), 461-468.

Ahmed, A. M., Hussein, A. I., & Shimamoto, T. (2007). Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. *Journal of*

antimicrobial chemotherapy, 59(2), 184-190.

Ahmed, A. M., Motoi, Y., Sato, M., Maruyama, A., Watanabe, H., Fukumoto, Y., & Shimamoto, T. (2007). Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. *Applied and environmental microbiology*, 73(20), 6686-6690.

Ahmed, A. M., & Shimamoto, T. (2011). Molecular characterization of antimicrobial resistance in Gramnegative bacteria isolated from bovine mastitis in Egypt. *Microbiology and immunology*, 55(5), 318-327.

Aktas, Z., Aridogan, A., Kayacan, C. B., & Aydin, D. (2007). Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. *Journal* of *Microbiology*, 45(4), 286-290.

Ali, A. O., & El Shrief, L. M. T. (2016). Molecular characterization of tetracycline-resistant genes in Staphylococcus aureus isolated from dairy cows and she-camels suffering from subclinical mastitis. *Alexandria Journal of Veterinary Sciences*, 48(2).

Ali, T., ur Rahman, S., Zhang, L., Shahid, M., Zhang, S., Liu, G., ... & Han, B. (2016). ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class 1 integrons with CTX-M linked to IS CR1. Frontiers in microbiology, 7, 1931.

Anand Kumar, P. (2009). Evaluation of PCR test for detecting major pathogens of bubaline mastitis directly from mastitic milk samples of buffaloes. *Tropical animal health and production*, 41, 1643-1651.

Bagcigil, A. F., Taponen, S., Koort, J., Bengtsson, B., Myllyniemi, A. L., & Pyörälä, S. (2012). Genetic basis of penicillin resistance of *S. aureus* isolated in bovine mastitis. Acta Veterinaria Scandinavica, 54, 1-7.

Blázquez, B., Llarrull, L. I., Luque-Ortega, J. R., Alfonso, C., Boggess, B., & Mobashery, S. (2014). Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). *Biochemistry*, *53*(10), 1548-1550.

Blowey, R. W., & Edmondson, P. (2010). *Mastitis control in dairy herds*. Cabi.

Bolte, J., Zhang, Y., Wente, N., Mahmmod, Y. S., Svennesen, L., & Krömker, V. (2020). Comparison of phenotypic and genotypic antimicrobial resistance patterns associated with Staphylococcus aureus mastitis in German and Danish dairy cows. *Journal of dairy science*, 103(4), 3554-3564.

Brennecke, J., Falkenberg, U., Wente, N., & Krömker, V. (2021). Are severe mastitis cases in dairy cows associated with bacteremia?. *Animals*, *11*(2), 410.

Bush, K. (2018). Past and present perspectives on β-lactamases. *Antimicrobial agents and chemotherapy*, 62(10), 10-1128.

Chaudhry, T. H., Aslam, B., Arshad, M. I., Alvi, R. F., Muzammil, S., Yasmeen, N., ... & Baloch, Z. (2020). Emergence of bla NDM-1 Harboring Klebsiella pneumoniae ST29 and ST11 in Veterinary Settings and Waste of Pakistan. *Infection and Drug Resistance*, 3033-3043.

Ciftci, A., Findik, A., Onuk, E. E., & Savasan, S. (2009). Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. *Brazilian Journal of Microbiology*, 40, 254-261.

Radostits, O. M., Gay, C. C., Hinchcliff, K. W., & Constable, P. D. (2007). A textbook of the diseases of cattle, horses, sheep, pigs and goats. *Vet. Med*, *10*, 2045-2050.

Dahmen, S., Métayer, V., Gay, E., Madec, J. Y., & Haenni, M. (2013). Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. *Veterinary microbiology*, 162(2-4), 793-799.

Delicato, E. R., de Brito, B. G., Gaziri, L. C. J., & Vidotto, M. C. (2003). Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. *Veterinary microbiology*, *94*(2), 97-103.

Duran, N., Ozer, B., Duran, G. G., Onlen, Y., & Demir, C. (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. *Indian Journal of Medical Research*, 135(3), 389-396.

EFSA Panel on Biological Hazards (BIOHAZ). (2011). Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. *EFSA Journal*, *9*(8), 2322.

El-hofy, F. I., Hamouda, R., & Awad, A. (2023). Molecular characterization of Escherichia coli isolated from mastitis in dairy cattle. *Benha Veterinary Medical Journal*, 45(2), 95-99.

Enany, S., & Alexander, L. C. (Eds.). (2017). The rise of virulence and antibiotic resistance in Staphylococcus aureus. BoD–Books on Demand.

Feßler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S., & Schwarz, S. (2010). Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. *Journal of Antimicrobial Chemotherapy*, 65(4), 619-625.

Freitag, C., Michael, G. B., Kadlec, K., Hassel, M., & Schwarz, S. (2017). Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. *Veterinary Microbiology*, 200, 151-156.

Geser, N., Stephan, R., & Hächler, H. (2012). Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. *BMC veterinary research*, 8, 1-9.

Ghanbarpour, R., & Salehi, M. (2010). Determination of adhesin encoding genes in Escherichia coli isolates from omphalitis of chicks. *American Journal of Animal and Veterinary Sciences*.

Ghatak, S., Singha, A., Sen, A., Guha, C., Ahuja, A., Bhattacharjee, U., ... & Jana, P. S. (2013). Detection of N ew D elhi Metallo-beta-Lactamase and Extended-Spectrum beta-Lactamase Genes in E scherichia coli Isolated from Mastitic Milk Samples. *Transboundary and emerging diseases*, 60(5), 385-389.

Gomes, F., & Henriques, M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. *Current microbiology*, 72, 377-382.

Grape, M., Motakefi, A., Pavuluri, S., & Kahlmeter, G. (2007). Standard and real-time multiplex PCR methods for detection of trimethoprim resistance dfr genes in large collections of bacteria. *Clinical Microbiology and Infection*, *13*(11), 1112-1118.

He, T., Wang, Y., Sun, L., Pang, M., Zhang, L., & Wang, R. (2016). Occurrence and characterization of bla NDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. *Journal of Antimicrobial Chemotherapy*, 72(1), 90-94.

Ibekwe, A. M., Murinda, S. E., & Graves, A. K. (2011). Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. *PloS one*, 6(6), e20819.

Ismail, Z. B., & Abutarbush, S. M. (2020). Molecular characterization of antimicrobial resistance and virulence genes of Escherichia coli isolates from bovine mastitis. *Veterinary World*, *13*(8), 1588.

Lan, T., Liu, H., Meng, L., Xing, M., Dong, L., Gu, M., ... & Zheng, N. (2020). Antimicrobial susceptibility,

phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. *Food and Agricultural Immunology*, *31*(1), 406-423.

Hoque, M. N., Das, Z. C., Talukder, A. K., Alam, M. S., & Rahman, A. N. M. A. (2015). Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh. *Tropical animal health and production*, 47, 79-86.

Kalińska, A., Gołębiewski, M., & Wójcik, A. (2017). Mastitis pathogens in dairy cattle–a review. *World scientific news*, (89), 22-31.

Keane, O. M. (2016). Genetic diversity, the virulence gene profile and antimicrobial resistance of clinical mastitis-associated Escherichia coli. *Research in microbiology*, 167(8), 678-684.

Keane, O. M., Budd, K. E., Flynn, J., & McCoy, F. (2013). Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex aetiology. *Veterinary Record*, *173*(1), 17-17.

Kehrenberg, C., & Schwarz, S. (2006). Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. *Antimicrobial agents and chemotherapy*, 50(4), 1156-1163.

Kim, Y. T., Jang, J. H., Kim, H. C., Kim, H. G., Lee, K. R., Park, K. S., ... & Kim, Y. J. (2011). Identification of strain harboring both aac (6')-Ib and aac (6')-Ib-cr variant simultaneously in Escherichia coli and Klebsiella pneumoniae. *BMB reports*, 44(4), 262-266.

Koovapra, S., Bandyopadhyay, S., Das, G., Bhattacharyya, D., Banerjee, J., Mahanti, A., ... & Singh, R. K. (2016).Molecular signature spectrum extended β-lactamase Klebsiella pneumoniae producing isolated from bovine milk in eastern north-eastern India. *Infection*, Genetics and Evolution, 44, 395-402.

Koriem, A. M., & Nady, E. A. E. (2024). Molecular detection of some antibiotic resistance genes of Escherichia coli isolated from bovines subclinical mastitis. *Journal of Advanced Veterinary Research*, 14(6), 991-995.

Krukowski, H., & Saba, L. (2003). Bovine mycotic mastitis. *Folia Vet*, 47(1), 3-7.

Lan, T., Liu, H., Meng, L., Xing, M., Dong, L., Gu, M., ... & Zheng, N. (2020). Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. Food and Agricultural Immunology, 31(1), 406-423.

Lanz, R., Kuhnert, P., & Boerlin, P. (2003). Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. *Veterinary microbiology*, *91*(1), 73-84.

Lima, M. C., de Barros, M., Scatamburlo, T. M., Polveiro, R. C., de Castro, L. K., Guimarães, S. H. S., ... & Moreira, M. A. S. (2020). Profiles of Staphyloccocus aureus isolated from goat persistent mastitis before and after treatment with enrofloxacin. *BMC microbiology*, 20, 1-11.

Llarrull, L. I., & Mobashery, S. (2012). Dissection of events in the resistance to β -lactam antibiotics mediated by the

protein BlaR1 from Staphylococcus aureus. *Biochemistry*, *51*(23), 4642-4649.

Locatelli, C., Scaccabarozzi, L., Pisoni, G., & Moroni, P. (2010). CTX-M1 **ESBL-producing** Klebsiella pneumoniae subsp. pneumoniae isolated of from cases bovine mastitis. Journal ofClinical Microbiology, 48(10), 3822-3823.

Martineau, F., Picard, F. J., Grenier, L., Roy, P. H., Ouellette, M., & Bergeron, M. G. (2000). Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. *Journal of Antimicrobial Chemotherapy*, 46(4), 527-534.

McClure, J. A., Conly, J. M., Lau, V., Elsayed, S., Louie, T., Hutchins, W., & Zhang, K. (2006). Novel multiplex PCR assay for detection of the staphylococcal virulence Panton-Valentine leukocidin genes and simultaneous discrimination methicillin-susceptible from-resistant staphylococci. Journal of clinical microbiology, 44(3), 1141-1144.

Metzger, S. A., & Hogan, J. S. (2013). Antimicrobial susceptibility and frequency of resistance genes in Escherichia coli isolated from bovine mastitis. *Journal of dairy science*, 96(5), 3044-3049.

Mungube, E. O., Tenhagen, B. A., Regassa, F., Kyule, M. N., Shiferaw, Y., Kassa, T., & Baumann, M. P. O. (2005). Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in crossbred dairy cows in Ethiopia. *Tropical animal health and production*, 37, 503-512.

Munoz-Price, L. S., Poirel, L., Bonomo, R. A., Schwaber, M. J., Daikos, G. L., Cormican, M., ... & Ouinn, J. (2013).Clinical Р. epidemiology of the global expansion Klebsiella pneumoniae carbapenemases. The Lancet infectious diseases, 13(9), 785-796.

Nguyen, M. C. P., Woerther, P. L., Bouvet, M., Andremont, A., Leclercq, R., & Canu, A. (2009). Escherichia coli as reservoir for macrolide resistance genes. *Emerging infectious diseases*, 15(10), 1648.

Nguyen, M. C. P., Woerther, P. L., Bouvet, M., Andremont, A., Leclercq, R., & Canu, A. (2009). Escherichia coli as reservoir for macrolide resistance genes. *Emerging infectious diseases*, 15(10), 1648.

Nobrega, D. B., Naushad, S., Naqvi, S. A., Condas, L. A., Saini, V., Kastelic, J. P., ... & Barkema, H. W. (2018). Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian dairy herds. *Frontiers in microbiology*, *9*, 256.

Ohnishi, M., Okatani, A. T., Harada, Sawada, T., Marumo, Murakami, M., ... & Takahashi, T. (2013).Genetic characteristics CTX-M-type extended-spectrum-β-(ESBL)-producing lactamase Enterobacteriaceae involved in mastitis cases on Japanese dairy farms, 2007 to 2011. Journal clinical of microbiology, 51(9), 3117-3122.

Olsen, J. E., Christensen, H., & Aarestrup, F. M. (2006). Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. *Journal of Antimicrobial Chemotherapy*, 57(3), 450-460.

Papp-Wallace, K. M., Bethel, C. R., Distler, A. M., Kasuboski, C., Taracila, M., & Bonomo, R. A. (2010). Inhibitor resistance in the KPC-2 β -lactamase, a preeminent property of this class A β -lactamase. *Antimicrobial agents and chemotherapy*, 54(2), 890-897.

Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D., & Hooper, D. C. (2006). Prevalence in the United States of aac (6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. *Antimicrobial agents and chemotherapy*, 50(11), 3953-3955.

Patel, R., Uhl, J. R., Kohner, P., Hopkins, M. K., & Cockerill 3rd, F. R. (1997). Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes in enterococci. *Journal of clinical microbiology*, *35*(3), 703-707.

Poirel, L., Madec, J. Y., Lupo, A., Schink, A. K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. *Microbiology spectrum*, *6*(4), 10-1128.

Qu, Y., Zhao, H., Nobrega, D. B., Cobo, E. R., Han, B., Zhao, Z., ... & Gao, J. (2019).Molecular epidemiology and distribution antimicrobial resistance genes Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. Journal dairy of science, 102(2), 1571-1583.

Radostitis, O. M., C. C. Gay, D. C. Blood and K. W. Hinchcliff. (2000). Mastitis: In Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. Pages 603-686, 9th ed. W.B. Saunders, Philadelphia, USA.

ur Rahman, S., Ali, T., Ali, I., Khan, N. A., Han, B., & Gao, J. (2018). The

growing genetic and functional diversity of extended spectrum beta-lactamases. *BioMed* research international, 2018(1), 9519718.

Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V., & Woodward, M. J. (2004). Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. *Journal of Antimicrobial Chemotherapy*, 53(2), 208-216.

Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. *Drug* resistance updates, 13(6), 151-171.

Robert, A., Seegers, H., & Bareille, N. (2006). Incidence of intramammary infections during the dry period without or with antibiotic treatment in dairy cows-a quantitative analysis of published data. *Veterinary Research*, 37(1), 25-48.

Saidani, M., Messadi, L., Soudani, A., Daaloul-Jedidi, M., Châtre, P., Ben Chehida, F., ... & Haenni, M. (2018). Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia. *Microbial Drug Resistance*, 24(8), 1242-1248.

Schlegelova, J., Vlkova, H., Babak, V., Holasova, M., Jaglic, Z., Stosova, T., & Sauer, P. (2008). Resistance to erythromycin of Staphylococcus spp. isolates from the food chain. *VETERINARNI MEDICINA-PRAHA-*, 53(6), 307.

Schukken, Y., Chuff, M., Moroni, P., Gurjar, A., Santisteban, C., Welcome, F., & Zadoks, R. (2012). The "other" gram-negative bacteria in mastitis:

Klebsiella, Serratia, and more. *Veterinary Clinics: Food Animal Practice*, 28(2), 239-256.

Schwarz, S., Feßler, A. T., Loncaric, I., Wu, C., Kadlec, K., Wang, Y., & Shen, J. (2018). Antimicrobial resistance among staphylococci of animal origin. *Microbiology spectrum*, *6*(4), 10-1128.

Talaat, H., El Beskawy, M., Atwa, S., Eissa, M., Mahmmod, Y., Elkady, M. A., & El-Diasty, M. M. (2023). Prevalence and Antibiogram of Staphylococcus aureus in Clinical and Subclinical Mastitis in Holstein Dairy Cows in Egypt. *Zagazig Veterinary Journal*, *51*(1), 59-75.

Wendlandt, S., Feßler, A. T., Monecke, S., Ehricht, R., Schwarz, S., & Kadlec, K. (2013). The diversity of antimicrobial resistance genes among staphylococci of animal origin. *International Journal of Medical Microbiology*, 303(6-7), 338-349.

Yaici, L., Haenni, M., Saras, E., Boudehouche, W., Touati, A., & Madec, J. Y. (2016). bla NDM-5-carrying IncX3 plasmid in Escherichia coli ST1284 isolated from raw milk collected in a dairy farm in Algeria. *Journal of Antimicrobial Chemotherapy*, 71(9), 2671-2672.

Youssif, N. H., Hafiz, N. M., Halawa, M. A., & Aziz, H. M. (2021). Genes conferring antimicrobial resistance in cattle with subclinical mastitis. *Bulgarian journal of veterinary medicine*, 24(1).

Yu, T., He, T., Yao, H., Zhang, J. B., Li, X. N., Zhang, R. M., & Wang, G. Q. (2015). Prevalence of 16S rRNA methylase gene rmtB among Escherichia coli isolated from bovine

mastitis in Ningxia, China. Foodborne pathogens and disease, 12(9), 770-777.

Yu, Z. N., Wang, J., Ho, H., Wang, Y. T., Huang, S. N., & Han, R. W. (2020). Prevalence and antimicrobial-resistance phenotypes and genotypes of Escherichia coli isolated from raw milk samples from mastitis cases in four regions of China. *Journal of global antimicrobial resistance*, 22, 94-101.