

Journal of Current Veterinary Research

ISSN: 2636-4026

Journal home page: http://www.jcvr.journals.ekb.eg

Animal health & Zoonotic disease

Assessment of Zoonotic Pathogenic Bacteria in the Cattle Slaughterhouses and the Efficacy of Some Disinfectants: A Public Health Perspective from Menoufia Governorate, Egypt.

Amani A. Mosleh¹, Nourhan Eissa²*, Alaa N. A. Saad³, Tasneem M. Amin⁴, Taher M. Abdelhamid⁵

- (1) Department of Microbiology, Animal Health Research Institute (ARC), Shebin El Kom Branch, Menoufia governorate, Egypt.
- (2) Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
- (3) Department of Microbiology, Mycology, and Immunology, Faculty of Veterinary Medicine, Benha University, Egypt.
- (4) Department of Microbiology, Mycology, and Immunology, Faculty of Veterinary Medicine, Menoufia University, Egypt.
- (5) Assistant Consultant, Veterinary Hospital, Faculty of Veterinary Medicine, Cairo University, Egypt.

ABSTRACT

The process of cleaning and disinfecting the slaughterhouse, the animals, the surroundings, and the hands of the employees is an critical control point for excellent hygiene and biosecurity procedure. The aerobic bacteria: Staphylococcus aureus, Escherichia coli, and Salmonella sp. were counted in the current investigation to evaluate the contamination of the abattoir and its consequences. 600 samples were gathered in all, including 150 samples per knife, 150 samples per floor, 150 samples per workers' hands, and 150 samples per wall. All the swabs were obtained from three abattoirs in the Menoufia governorate (Menouf, Tala, and El-Shohadaa). Aerobic bacteria results showed that the walls of the abattoirs had the greatest values, followed by the floors, knives, and hands of the workers. A total occurrence rate of 73.5% (441/600) of S. aureus was obtained from all the samples collected from all the slaughterhouses, whereas a total occurrence rate of 52.33% (314/600) of E. coli was recorded from all the samples from all the slaughterhouses. Additionally, the overall value of Salmonella sp. in all slaughterhouses was 23% (138/600). No discernible difference between the occurrence rates of the pathogenic bacteria and the climatic conditions at the time of sampling was found. Furthermore, Hydrogen peroxide was the most efficient disinfectant after using disinfectants on all the evaluated samples. The real state of contamination in the slaughterhouses' environment and the impact of disinfectants were shown by the microbiological analysis of the samples that were collected in the current investigation.

Keywords: Zoonoses, Slaughterhouses, Disinfectants, Menoufia governorate, Pathogenic bacteria.

INTRODUCTION

Worldwide. foodborne zoonotic illnesses are a major and pervasive public health issue that lead to human illness (Aimon et al., 2021; Eissa, 2024a, b, c; Salman et al., 2024b; Eissa et al., 2025; Elrefaey and Eissa, 2025; Ramzy et al., 2025). Since meat has been a major source of protein in the average person's diet for around 2.6 million years, humans are regarded as omnivores. By 2050, it is predicted that meat consumption would have increased by 460-570 million metric tons (Birgani et al., 2022). According to the annual European Union (EU) One Health Zoonoses report, the consumption of livestock products tainted with bacterial pathogens that are naturally found in the gut of foodproducing animals caused a 44% increase in foodborne outbreaks in the EU in 2022 compared to 2021 (EFSA and ECDC, 2023). It is believed that these illnesses are mostly prevalent in animals and slaughterhouses, where they might spread from animals to humans and jeopardize the safety of food (Ali and Alsayegh, 2022). Food security, quality, and safety therefore worldwide issues (Birgani et al., 2022; Zain Eldeen et al., 2024).

The main goal of slaughterhouses is to produce meat fit for human consumption, where the official veterinary inspector (OVI) makes sure that all of the slaughter procedures are

conducted in a sanitary manner in compliance with good manufacturing practices (Mrdovic et al., 2017; Nasr and Eissa, 2025a, b). Also, a postmortem inspection is performed to evaluate the carcass and viscera, as this prevents the spread of diseases and breaks the cycles of transmission (Berardinelli et al., 2014). In spite of foodborne illnesses can spread from the abattoir through the processing and distribution network, including retail locations, and eventually impact the final consumer, it is considered a crucial link in the supply chain (Mrdovic et al., 2017). Therefore, strict hygienic measures at slaughterhouses, during distribution and storage at retail locations. and during sales necessary to ensure the quality and safety of meat to protect public health (Salman et al., 2024b; Eissa and Nasr, 2025).

Total Aerobic Plate Count (TAPC), which shows the overall bacterial burden in meat, is a useful method for food safety monitoring (Bersisa et al., 2019). Critical pathogenic bacteria like Staphylococcus aureus (S. (E. coli). aureus), Escherichia coli and Salmonella primarily sp. are found in foodstuffs of animal origin, where the processing environment's poor hygiene and disinfection practices are the primary cause of the elevated infection (Chinemerem risk of Nwobodo et al., 2022; Salman et al., 2024a, b; Eldin et al., 2025). These pathogens are among the bacteria that can cause local and even systemic human illnesses and are the main foodborne risks linked to fresh meat (Bersisa et al., 2019; Eissa and Harb, 2023). When infected meat is consumed by people, S. aureus, because of its enterotoxins, are the main cause of food poisoning (Das et al., 2019; Salman et al., 2024a). Moreover. when E. coli and/or Salmonella sp. are found in the food intended for human consumption, it indicates fecal contamination and processing inadequate cleanliness (Atnafie et al., 2017; Takele et al., 2018; Eldin et al., 2025).

Slaughterhouse hygiene practices are affecting the quality of meat as well as the level of contamination caused by a of including variety sources, contaminated surfaces. water. equipment, working environments, and aerosols (Laban et al., 2021; El-Khadry et al., 2025). Building on this efficacy, the current study's goal was the certain level demonstrate of contamination followed by verifying and confirming the efficiency different disinfectants used for disinfection in the slaughterhouses in Menoufia governorate, Egypt.

MATERIAL AND METHODS

1. Study cites and sample collection:

Three large-capacity cattle slaughterhouses in Menoufia governorate of Egypt were the sites of the current study. Menouf was home to slaughterhouse A, Tala to slaughterhouse B, and El-Shohadaa to slaughterhouse C. Between August

2024 and September 2025, a total of 600 swab samples (200)slaughterhouse) of sterile cotton-tipped swabs moistened with peptone water broth (Microxpress Pvt. Ltd., India) were collected from these three slaughterhouses, totaling 150 sets of swabs from slaughtering and skinning knives, 150 hand swabs from butchers and other abattoir employees, 150 wall swabs, and 150 floor swabs (50 from each slaughterhouse) were gathered. According to Awaad et al. (2024), all swabs were collected and transported in an ice box $(2-5^{\circ}C)$ to the Zoonoses laboratory at the Faculty of Veterinary Medicine, University of Sadat City, Egypt, for examination. Immediately after collection, the swabs were placed in sterile tubes with 5 ml of buffered peptone water (Microxpress Pvt. Ltd., India). An Ethical Approval Number was issued for the obtained samples (VUSC-009-1-25).

2. <u>Isolation of particular hygiene</u> <u>indicator microorganisms and</u> <u>their biochemical identification.</u>

2.1. <u>Staphylococcus aureus isolation</u> and biochemical identification:

In order to isolate S. aureus, in accordance with Salman (2024a), Baird Parker agar (BPA) supplemented with egg yolk telluride emulsion (Difco Laboratories, Detroit, Michigan, USA) was used and incubated for 48 hours at 37 °C. In addition, the coagulase test (negative except for S. aureus) and the catalase test (positive) were used for the identification biochemical ofStaphylococcus sp. (Salman et al., 2024a, b).

2.2.<u>E. coli isolation and biochemical</u> identification:

According to Salman et al. (2024b), E. coli sp. were isolated on Eosin Methylene Blue (EMB) agar (Oxoid, Basingstoke, UK) and cultured for 24 hours at 37 °C. According to Salman et al. (2024b), the TSI (Triple Sugar Iron) test (Acid/Acid, Gas), the Simmon Citrate test (negative), the Urease test (negative), and the Indole test (positive) were used for the biochemical identification of E. coli.

2.3. <u>Salmonella sp. isolation and</u> biochemical identification:

Samples were cultured aerobically for 24 hours at 37 °C in buffered peptone water (BPW) (Microxpress Pvt. Ltd., India). 9 ml of Rappaport Vassiliadis (RV) broth (Oxoid, Basingstoke, UK) was inoculated with 1 ml from the preenrichment tubes, and the mixture was incubated aerobically for 24 hours at 42 °C. According to Eldin et al. (2025), a loop full of selectively enriched broth was streaked separately over Salmonella-Shigella (SSA) agar Basingstoke, (Oxoid, UK) and incubated for 24 hours at 37 °C. According to Eldin et al. (2025), the TSI test (alkaline/acid, positive H2S, and positive gas generation), the urine test (negative), and the Indole test (negative) used were for the biochemical identification of Salmonella sp.

3. Assessment of disinfectants activity on walls and floors of the slaughterhouses under examination (disinfectant resistance testing):

In addition to collecting the study samples, the current analysis evaluated the disinfecting efficacy of three widely used, reasonably priced, widely accessible, and broad spectrum disinfectants: 1% hydrogen peroxide (H2O2), 1% hypochlorus acid (HoCl), and 1% quaternary ammonium compounds (QACs) (6th October 3rd Industrial Area, Egypt), as reported by Walia et al. (2017) and Salama et al. (2024). Walls were categorized into 4 groups (each group measured 20 cm), group 1 (G1) was left as a control group (no disinfection added, estimate the total bacterial count before disinfection), group 2 (G2) was used for measuring hypochlorous acid 1% activity, group 3 (G3) was quaternary ammonium compounds 1%, and group 4 (G4) was for hydrogen peroxide 1%. For the purpose of measuring the total bacterial count (TBC) on nutrient agar (Microxpress Pvt. Ltd., India) for 24 hours at 37 °C, careful observation was conducted by taking swabs from each group alone. The swabs were taken after contact time with the examined disinfectants (0, 5, 10, and 20 minutes) where compared with the control group (Walia et al., 2017; Salama et al., 2024).

4. Statistical analysis:

Using SPSS, version 27 (IBM Corp., 2013), a two-way ANOVA was used for statistical analysis. The significance level was set at P<0.05, and the Duncun test was used for multiple comparisons. The logarithm of colony forming units per square centimeter (log10 CFU/cm2) was used to express

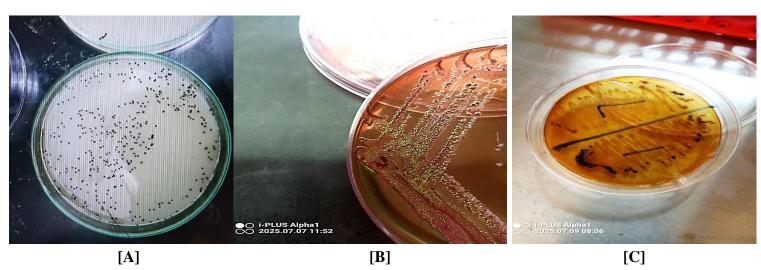
the results in accordance with Morshdy et al. (2022). Furthermore, percentages were computed to describe the infection frequency in accordance with Eissa et al. (2025) and Zain Eldeen et al. (2024).

RESULTS

- 1. The outcomes of specific hygienic indicator bacteria's isolation and biochemical identification.
- 1.1.According to location:

Table (1): Occurrence of *S. aureus* by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa):

Samples	Slaughter A	rhouse	Slaughter B	house	Slaughterhouse C		Total (No.= 150 per sample type)	
	No.	%	No.	%	No.	%	No.	%
Hand swabs	17	34	16	32	36	72	69	46
(No.= 50 per								
slaughterhouse)								
Floor swabs	38	76	35	70	42	84	115	76.67
(No.= 50 per								
slaughterhouse)								
Wall swabs	48	96	36	72	49	98	133	88.67
(No.=50 per								
slaughterhouse)								
Knife swabs	43	86	35	70	46	92	124	82.67
(No.=50 per								
slaughterhouse)								
Total of all	146/200	73	122/200	61	173/200	86.5	441/600	73.5
slaughterhouses								
(No.=600)								


Table (2): Occurrence of *E. coli* by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa):

Samples	Slaught	Slaughterhouse Slaugh		ughterhouse Slaughterhous		terhouse	Total			
	A		В		C	\mathbf{C}		(No.= 150 per		
							sample t	ype)		
	No.	%	No.	%	No.	%	No.	%		
Hand swabs	13	26	8	16	14	28	35	23.33		
(No.=50 per										
slaughterhouse)										
Floor swabs	32	64	19	38	33	66	84	56		
(No.=50 per										
slaughterhouse)										
Wall swabs	37	74	30	60	39	78	106	70.67		
(No.=50 per										
slaughterhouse)										
Knife swabs	31	62	26	52	32	64	89	59.33		
(No.= 50 per										

slaughterhouse)								
Total of all	113/200	56.5	83/200	41.5	118/200	59	314/600	52.33
slaughterhouses								
(No.=600)								

Table (3): Occurrence of *Salmonella* sp. by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa):

Samples	Slaughterhouse A Slaughterhouse B C		Slaughterhouse Total (No.= 150 per sample type)		-			
	No.	%	No.	%	No.	%	No.	%
Hand swabs	4	8	2	4	6	12	12	8
(No.=50 per								
slaughterhouse)								
Floor swabs	9	18	7	14	13	26	29	19.33
(No.=50 per								
slaughterhouse)								
Wall swabs	15	30	14	28	25	50	54	36
(No.=50 per								
slaughterhouse)								
Knife swabs	12	24	11	22	20	40	43	28.67
(No.=50 per								
slaughterhouse)								
Total of all	40/200	20	34/200	17	64/200	32	138/600	23
slaughterhouses								
(No.=600)								

Figure (1): Isolation of specific hygienic indicator bacteria in three slaughterhouses in Menoufia governorate, Egypt. **[A]:** Showing black or grey-black colonies of *Staphylococcus aureus* with a surrounding clear, and opaque halo on Baird Parker agar (BPA) medium, **[B]:** Showing blue-black colonies of *Escherichia coli* with green metallic sheen on Eosin Methylene Blue (EMB) agar medium, and **[C]:** Showing opaque or colorless colonies of *Salmonella* sp. on Salmonella-Shigella (SSA) agar medium.

Three zoonotic pathogens (S. aureus, E. coli, and Salmonella sp.) were successfully isolated from three slaughterhouses in the Menoufia governorate (Menouf, Tala, and El-Shohadaa) as indicated in tables (1, 2, and 3) and figure (1). In swabs taken from butchers' hands, floors, walls, and knives, the overall occurrence rates of S. aureus were 46% (69/150), 76.67% (115/150), 88.67% (133/150), and 82.67% (124/150), respectively, of the three slaughterhouses.

The overall incidence rates of *E. coli* in the three slaughterhouses were 59.33% (89/150) in knife swabs, 70.67% (106/150) in wall swabs, 56% (84/150) in flooring, and 23.33% (35/150) in hand swabs. Additionally, *Salmonella* sp. was found in all three slaughterhouses at a rate of 8% (12/150) in hands, 19.33% (29/150) in floors, 36% (54/150) in walls, and 28.67% (43/150) in knives.

1.2. <u>According to the prevailing</u> <u>climatic conditions:</u>

Table (4): Occurrence of *S. aureus* by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa) according to prevailing climatic conditions:

Samples	Slaughterhouse A					hterho	use B		Slaug	Slaughterhouse C			
_	Warm climate		Cold climate		Warm climate			Cold climate		Warm climate		l ate	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	
Hand swabs	11	22	6	12	9	18	7	14	21	42	15	30	
(No.= 50 per slaughterhouse)													
Floor swabs	24	48	14	28	19	38	16	32	26	52	16	32	
(No.=50 per													
slaughterhouse)													
Wall swabs	29	58	19	38	25	50	11	22	30	60	19	38	
(No.=50 per													
slaughterhouse)													
Knife swabs	26	52	17	34	20	40	15	30	29	58	17	34	
(No.=50 per													
slaughterhouse)													
P-value	0.984 ^{NS}				0.568 ^{NS}			0.978 ^{NS}					

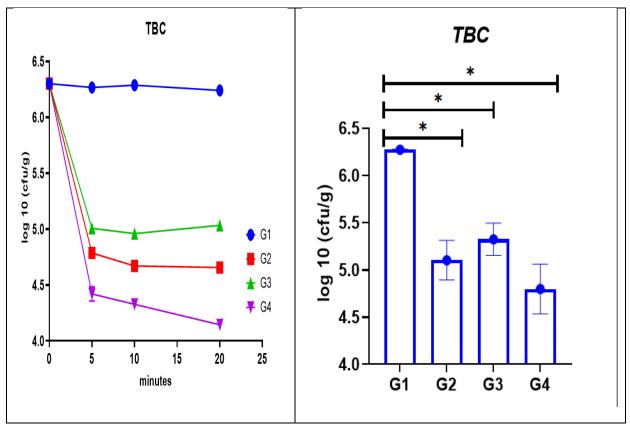
NS: Non-Significant.

Table (5): Occurrence of *E. coli* by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa) according to prevailing climatic conditions:

Samples	Slaug	hterhouse		Slaug	hterho	use B		Slaug	Slaughterhouse C			
_	Warm climate		Cold climate			Warm climate		ate	Warm climate		Cold climate	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
Hand swabs	9	18	4	8	6	12	2	4	9	18	5	10
(No.= 50 per slaughterhouse)												
Floor swabs	20	40	12	24	11	22	8	16	22	44	11	22
(No.=50 per												
slaughterhouse)												
Wall swabs	24	48	13	26	19	38	11	22	27	54	12	24
(No.=50 per												
slaughterhouse)												
Knife swabs	22	44	9	18	17	34	9	18	21	42	11	22
(No.=50 per												
slaughterhouse)												
P-value	$0.898^{ m NS}$				0.861 ^{NS}				0.983 ^{NS}			

NS: Non-Significant.

Table (6): Occurrence of *Salmonella* sp. by isolation and biochemical identification in slaughterhouse A (in Menouf), slaughterhouse B (in Tala), and slaughterhouse C (in El-Shohadaa) according to prevailing climatic conditions:


Samples	Slaughterhouse A				Slaug	Slaughterhouse B				Slaughterhouse C			
	Warm climate		Cold climate		Warn	Warm		Cold		Warm			
					climate		climate		climate		clima	ate	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	
Hand swabs	3	6	1	2	2	4	0	0	4	8	2	4	
(No.= 50 per													
slaughterhouse)													
Floor swabs	6	12	3	6	5	10	2	4	10	20	3	6	
(No.=50 per													
slaughterhouse)													
Wall swabs	11	22	4	8	9	18	5	10	16	32	9	18	
(No.=50 per													
slaughterhouse)													
Knife swabs	9	18	3	6	7	14	4	8	13	26	7	14	
(No.= 50 per													
slaughterhouse)													
P-value	0.976^{NS}				0.764^{NS}			0.869^{NS}					

NS: Non-Significant.

Tables 4, 5, and 6 showed that, despite higher occurrence rates during warm climates compared to cold climates, there was no correlation between the occurrence of any of the pathogens under investigation and the variations in the year-round prevailing climatic conditions (August 2024 to September 2025).

Table (7): Effect of hyopchlorus acid (HoCl), quaternary ammonium compounds (QACs), hydrogen peroxide (H_2O_2) on walls and floors of the examined slaughterhouses:

Time/min.	Total Bacterial C	Count (TBC)				
Group number	Mean±SE	Log reduction				
Group 1 (Control group)						
Zero	6.30±0.0a					
5 min	6.26±0.009ab	0.6				
10 min	6.28±0.00ab	0.6				
20 min	6.24±0.011b					
P value	.004	-				
Group 2 (Hypochlorus acid 1%)						
Zero	6.30±0.0a					
5 min	4.78±0.006b	1.65				
10 min	4.67±0.01c	1.65				
20 min	4.65±0.012c					
P value	.000	·				
Group 3 (QACs 1%)						
Zero	6.30±0.0a					
5 min	5.01±0.029b	1 27				
10 min	4.96±0.011b	1.27				
20 min	5.03±0.043b					
P value	.000					
Group 4 (Hydrogen peroxide 1%)						
Zero	6.30±0.0a					
5 min	4.42±0.064b	2.16				
10 min	4.32±0.012b					
20 min	4.14±0.014c					
P value	.000	•				

Figure (2): Statistical analysis of different disinfectants on walls and floors of the examined slaughterhouses. **G:** Group, **TBC:** Total bacterial count.

The effects of the three investigated disinfectants (1% hydrogen peroxide, 1% quaternary ammonium compounds, and 1% hydrochlorus acid) applied to the walls and floors of slaughterhouses under investigation at the same concentration and for the same contact times (0, 5, 10, and 20 minutes), were shown in table (7) and figure (2). 1% hydrogen peroxide had the greatest impact on the total (TBC) ofbacterial count the slaughterhouses' walls and floors. followed by 1% hypochlorous acid and 1% quaternary ammonium compounds.

DISCUSSION

Global interest and concern in food safety is growing (Salman et al., 2024a; Eissa et al., 2025; Eldin et al., 2025; Ramzy et al., 2025). Controlling

every step of the slaughterhouse process, from the animals' arrival to the meat's extraction, is the aim of veterinary inspection services (Awaad et al., 2024). Furthermore, a high level of animal health requirements must be met by primary production animals intended for human consumption in order to ensure the hygienic and healthful nature of meat. Additionally, sanitary and preventive measures must be applied in slaughterhouses (García-Díez et al., 2023).

Due to the possibility of cross-contamination at different processing stages, such as animal slaughter, flaying, evisceration, deboning, and carcass transportation, meat can become contaminated with a wide range of zoonotic pathogenic bacteria, which can have detrimental effects on public health (Ras, 2019; Eissa and

Nasr, 2025). Assessing the pathogenic zoonotic bacteria that could be spread through various parts of the three primary slaughterhouses in the Menoufia governorate (Menouf, Tala, and El-Shohadaa) was the goal of the current study.

The present study succeeded in isolating three pathogenic bacteria (S. aureus, E. coli, and Salmonella sp.) where the findings were declared in tables (1, 2, and 3), and figure (1). From the published Egyptian studies that concerned the pathogenic bacteria in slaughterhouses, Awaad et al. (2024) presented through their study in Qalyubia, Menoufia, and Cairo governorates that the overall occurrence of S. aureus was 88.33% where floor swabs showed the highest occurrence rate of 100%, they also showed an overall E. coli occurrence rate of 39.58% where the highest occurrence rate was 60% among walls. Moreover, they reported an overall 2.29% occurrence rate of Salmonella sp. where skinning knives showed a higher occurrence of 8.33% than that 1.67% of floors.

Furthermore, In Sharkia governorate, Nabawy et al. (2016) illustrated occurrence rate of 58.4% (73/125) of E. coli where workers hands showed 52% (13/25) of E. coli occurrence in comparison with 40% (10/25) among knives. In addition, they showed an occurrence rate of 4.8% (6/125) of Salmonella sp. where the occurrence rate was higher 4% (1/25) among hand swabs than that 0% (0/25) among knives. Moreover, Sharkia in governorate, Morshdy et al. (2022) declared that *S. aureus* was the highest pathogen in occurrence rate 29% (29/100) where floors showed an occurrence rate of 40%.

In other parts of the world, a high occurrence rate of S. aureus 68% (204/300)was recorded in slaughterhouses in Nigeria (Ekpono et al., 2024). However, Cheng et al. (2025) reported a very low occurrence rate of 7.07% of S. aureus in slaughterhouses in China. Furthermore, Rasul et al. (2025) mentioned a very occurrence rate of 94.8% high (237/250) of E. coli in slaughterhouse in Iraq where knives and hands showed 100% (40/40) *E. coli* occurrence rate for each. The slaughterhouse important as a surveillance center for different occupational workplace infections) zoonotic agents as described in the European Union One Health 2021 zoonoses report (EFSA, 2021), as the majority of them can be controlled by implementing good manufacturing practices in both industry and the food the slaughterhouse (Ferreira et al., 2021).

The current study revealed that the slaughterhouse C (in El-Shohadaa) was the highest in all occurrence rates of pathogenic bacteria other than other slaughterhouses (in Menouf and Tala), which would be explained by the fact that the slaughterhouse C was the biggest one with a more animal than others. As slaughterhouse C was the least one in hygienic scoring where little attention was paid for routine cleaning and disinfection, and delayed transmission of carcasses after slaughtering process. All these insights revealed the effectiveness of the hygiene protocols adopted in these facilities was crucial to mitigate the risks of microbiological contamination and ensure compliance with food safety standards (Ovuru et al., 2024).

Furthermore, occurrence rates different pathogens were higher among wall swabs in comparison with other samples' swabs, which were somewhat similar to Soliman et al. (2016) and Portillo-Alarcon et al. (2025). In slaughterhouses, the contact between carcasses and the surrounding walls and floors is often considerable. Although water spraying is applied, it partially removes microbial contamination and organic residues from the floors. Wall sanitation. however, is generally inadequate, as minimal amounts of water are used and proper scrubbing with brushes or equivalent tools is rarely performed. Consequently, this inadequate cleaning practice prolongs microbial contact time and facilitates microbial persistence and growth on surfaces (Carter et al., 2021). As well, lactic acid, released during rigor mortis, has been proven to be an effective single intervention against microbial indicators in floors, hands, and knives (Carter et al., 2021).

Regarding the effect of the prevailing climatic conditions during sampling, no statistical difference was declared between occurrence rates of different pathogens and season of collection in agreement with Arabi et al. (2014) and Salman et al. (2024b). On the contrary, Eldin et al. (2025) reported that

occurrence rates of different pathogens were higher during cold climate than during warm climate. The detected non-significant statistical relationship between season and occurrence rates would be referred to the fact that these pathogens were evenly distributed all the time during the year (Eldin et al., 2025).

Finally, the current investigation revealed that the disinfectant H₂O₂ 1% had the best effect on total bacterial count (TBC) of walls and floors of the examined slaughterhouses followed by HoCl 1% and QACs 1%. The obtained findings were similar to those of Ahmed et al. (2024) otherwise that of Soliman et al. (2016). H2O2 was distinguished by a wide range of action mechanisms involving DNA damage, inner membrane damage, and oxidation of microbial core proteins, so be more effective against pathogenic bacteria in slaughterhouses (i.e., in presence of organic matter) (Setlow and Christie, 2021).

CONCLUSION

The public's health may be seriously threatened by the variety and abundance of microbial populations found in slaughterhouses. Limiting and the transmission preventing infections and associated contaminating genes (virulence factors and antibiotic resistance genes) from the food supply chain to the consumer requires effective control techniques. This study showed promising findings for the use of H₂O₂ disinfectant as a and highly effective sustainable advanced disinfection approach, either alone or in conjunction with a slaughterhouse's regular disinfection procedure. We suggest investigating this sustainable disinfection method further in the future, with particular emphasis on more harmful bacterial species.

REFERENCES

Ahmed, W. I., Mohammed, A. N., & Sleim, A. S. A. (2024). Efficacy evaluation of hydrogen peroxide disinfectant based zinc oxide nanoparticles against diarrhea causing Escherichia coli in ruminant animals and broiler chickens. *Scientific Reports*, 14(1), 9159.

Aimon, S. S., Liaquat, A., Aamir, S. H., Qadeer, T., Ashraf, S., & Ali, R. (2021). Blend of flour with Vigna radiata and Vigna mungo used in muffins in order to increase nutritional properties. *Agrobiol Rec*, *3*, 29-35.

Ali, S., & Alsayeqh, A. F. (2022). Review of major meat-borne zoonotic bacterial pathogens. *Frontiers in Public Health*, *10*, 1045599.

Atnafie, B., Paulos, D., Abera, M., Tefera, G., Hailu, D., Kasaye, S., & Amenu, K. (2017). Occurrence of Escherichia coli O157: H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa, Ethiopia. *BMC microbiology*, *17*(1), 24.

Awaad, D. S. A. E. A., Aidaros, H. A. A., Ashoub, M. M. A. E. R., & El Daous, H. G. (2024). Prevalence of specific hygienic Indicator bacteria in cattle slaughterhouses of different capacity in Egypt. *Benha Veterinary Medical Journal*, 47(1), 26-32.

Berardinelli, P., Ianniciello, R., Russo, V., & Ninios, T. (2014). Post-Mortem Inspection and Related Anatomy. *Meat*

inspection and control in the slaughterhouse, 73-155.

Berardinelli, P., Ianniciello, R., Russoand, V., & Ninios, T. (2014). Post-mortem inspection and related anatomy. In Meat Inspection Control in the Slaughterhouse; Ninios, T., Lunden, J., Korkeala, Fredriksson-Ahomaa, M., Eds.; Wiley: West Sussex, UK, pp. 73–156.

Bersisa, A., Tulu, D., & Negera, C. (2019). Investigation of bacteriological quality of meat from abattoir and butcher shops in Bishoftu, Central Ethiopia. *International journal of microbiology*, 2019(1), 6416803.

Birgani, R. A., Kianirad, A., Shab-Bidar, S., Djazayeri, A., Pouraram, H., & Takian, A. (2022). Climate change and food price: a systematic review and meta-analysis of observational studies, 1990-2021. *American Journal of Climate Change*, 11(2), 103-132.

Carter, J. M., Abdelmajid, N., Gonzalez-Rivera, C., Kremer-Caldwell, S., Seys, S. A., & Whitaker, R. (2021). Effects of antimicrobial interventions on indicator organisms during beef carcass dressing. *Journal of Food Protection*, 84(4), 664-673.

Cheng, C., Yan, L., Xin, W., Cheng, D., & Tao, J. (2025). Pathogenic Microorganisms in the Environment of Sheep Slaughterhouse. *Acta Scientiae Veterinariae*, 53.

Das, A., Rume, F., Ansari, W., Alam, M., Islam, M., Dutta, P., & Anower, A. K. M. M. (2019). Assessment of bacterial contamination levels on the surface of the bovine carcasses at slaughterhouses of Barishal city in Bangladesh. *J Vet Med One Health Res*, *I*(2), 231-45.

EFSA and ECDC (European Food Safety Authority and European Centre

for Disease Prevention and Control) (2023). The European Union One Health 2022 Zoonoses Report EFSa J., 21,

p. e8442, <u>10.2903/j.efsa.2023.8442</u>

EFSA—European Food Safety Authority; European Centre for Disease Prevention and Control (2021). The European Union one health 2020 zoonoses report. *EFSA J. 19*, e06971.

Eissa, N. (2024a). Fungal diseases of dogs and cats. In Introduction to Diseases, Diagnosis, and Management of Dogs and Cats (pp. 523-532). Academic Press.

Eissa, N. (2024b). Mycoplasma, Rickettsia, and Chlamydia diseases of dogs and cats. In Introduction to Diseases, Diagnosis, and Management of Dogs and Cats (pp. 489-499). Academic Press.

Eissa, N. (2024c). 22 Q Fever (Queensland Fever). The Handbook of Zoonotic Diseases of Goats, 260.

Eissa, N., & Harb, O. H. (2023). Diseases of the ear. In Key Questions in Clinical Farm Animal Medicine, Volume 2: Types, Causes and Treatments of Infectious Disease (pp. 232-276). GB: CABI.

Eissa, N., & Nasr, M. A. (2025). Basics of Water Supply, Quality, and Purification. Epidemiology and Environmental Hygiene in Veterinary Public Health, 439-449.

Eissa, N., Salman, M. B., Younes, A. M., Mohamed, E. A., Abu Seida, A. M., Abdulkarim, A., & Zin Eldin, A. I. (2025). One health approach on zoonotic multidrug-resistant Klebsiella pneumoniae isolated from Egyptian cattle, horses, and humans. Open Veterinary Journal, 15(9): 4219-4234.

Ekpono, C. U., Agu, P. C., Ogba, R. C., Aja, P. M., Isaac, E., & Iroha, I. R. (2024). Nasal carriage of multi-drug resistance Staphylococcus aureus constitutes potential zoonosis from poultry farmers and butchers in slaughterhouses in Abakaliki, Ebonyi state, Nigeria. *Discover Medicine*, *1*(1), 144.

Eldin, A. I. Z., Hozyen, H. F., Shafik, E., & Eissa, N. (2025). A new Egyptian approach to the antibacterial effect of zinc oxide nanoparticles on zoonotic bacteria with different transmission patterns isolated from cattle. Open Veterinary Journal, 15(6): 2518-2518.

El-Khadry, S., Elbahy, N., Elkhatam, A., Eissa, N., & Zidan, S. (2025). An Overview of the Potential Role of Water as a Vehicle of Zoonotic Protozoa. Journal of Current Veterinary Research, 7(1): 234-256.

Elrefaey, A., & Eissa, N. (2025). Milk: A global nutrition appeal. In Handbook of Milk Production, Quality and Nutrition (pp. 229-242). Academic Press.

Ferreira, M. N., Elliott, W., Kroner, R. G., Kinnaird, M. F., Prist, P. R., Valdujo, P., & Vale, M. M. (2021). Drivers and causes of zoonotic diseases: An overview. *Parks*, 27(27), 15-24.

García-Díez, J., Saraiva, S., Moura, D., Grispoldi, L., Cenci-Goga, B. T., & Saraiva, C. (2023). The importance of the slaughterhouse in surveilling animal and public health: a systematic review. *Veterinary Sciences*, *10*(2), 167.

Laban, S., Mashaly, M., Aly, A., Maher, N. and Zaki, M., (2021). Evaluation of different hygienic practices applied in slaughterhouses and its effect on beef quality.

Advances in Animal and Veterinary Sciences, 9,3, 429-437.

Morshdy, A. E. M., El-Tahlawy, A. S., Hafez, A. E. S. E., Mahmoud, A. F. A., El-Bayomi, R. M., & Hussein, M. A. (2022). Evaluation of the hygienic status at El-Qurein abattoir in Sharkia Governorate, Egypt.

Mrdovic, B., Raseta, M., Brankovic-Lazic, I., Milijasevic, M., Baltic, B. and Nastasijevic, I., (2017). Pigs and cattle slaughter process hygiene in a large-scale and small-scale abattoir: a report from one county in Serbia. Meat Technology, 58,2, 65-72.

Nabawy, E. E., Gharieb, R., & Tharwat, A. E. (2016). Occurrence, phenotypic and genotypic characterization of multidrug resistant zoonotic bacteria isolated from poultry slaughterhouses. *Japanese Journal of Veterinary Research*, 64(Supplement 2), S173-S180.

Nasr, M. A., & Eissa, N. (2025a). Maintenance of Industrial Hygiene. Epidemiology and Environmental Hygiene in Veterinary Public Health, 593-597.

Nasr, M. A., & Eissa, N. (2025b). Rural and Urban Pollution. Epidemiology and Environmental Hygiene in Veterinary Public Health, 405-414.

Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al-Ouqaili, M. T., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. *Journal of clinical laboratory analysis*, 36(9), e24655.

Ovuru, K. F., Izah, S. C., Ogidi, O. I., Imarhiagbe, O., & Ogwu, M. C. (2024). Slaughterhouse facilities in developing nations: Sanitation and

hygiene practices, microbial contaminants and sustainable management system. *Food Science and Biotechnology*, *33*(3), 519-537.

Portillo-Alarcon, R. M., Brashears, M. M., Sanchez-Plata, M. X., Roldan, A., & Miller, M. F. (2025). Biomapping and Enviromapping of Microbial Indicators and Pathogens in a Commercial Beef Processing Facility. *Meat and Muscle Biology*, *9*(1).

Ramzy, G., Mousa, W., Gaidan, O. K., Zaghawa, A., Nayel, M., Elsify, A., ... & Salama, A. (2025). Molecular characterization and associated risk factors of zoonotic cryptosporidiosis in bovine calves and humans in Menoufia governorate, Egypt. Open Veterinary Journal, 15(1): 277.

Ras, R. A. (2019). Parasitic and bacterial assessment of edible offal of slaughtered animals at Sharkia abattoirs, Egypt. Egyptian Veterinary Medical Society of Parasitology Journal (EVMSPJ), 15(1), 64-88.

Rasul, Z. S., Khidhir, Z. K., & Arif, E. D. (2025). Hygienic Status of Modern Animal Slaughterhouse in Sulaymaniyah Province, Iraq. *Egyptian Journal of Veterinary Sciences*, 1-9.

Salama, H. F., Elzeftawy, H. M., & Kirrella, G. A. (2024). Hygienic measures of abattoir with reference to different disinfectants. *Journal of Advanced Veterinary Research*, 14(3), 390-395.

Salman, M. B., Eldin, A. I. A. Z., Eissa, N., Maher, A., Aish, A. E., & Abd El-Moez, S. I. (2024a). Evaluation of the effectiveness of some essential oils against zoonotic methicillinresistant Staphylococcus aureus isolated from dairy products and humans. *Journal of Advanced*

Veterinary and Animal Research, 11(2), 306.

Salman, M. B., Zin Eldin, A. I. A., Ata, N. S., AbdElfatah, E. B., & Eissa, N. (2024b). Prevalence, antimicrobial resistance and risk factors of zoonotic foodborne pathogens isolated from camel meat. Journal of Current Veterinary Research, 6(1): 272-284.

Setlow, P., & Christie, G. (2021). What's new and notable in bacterial spore killing!. World journal of microbiology and biotechnology, 37(8), 144.

Soliman, E. S., Moawed, S. A., & Ziaan, A. M. G. (2016). Assessing cleaning and disinfection regime in a slaughterhouse against carcasses contamination. *Adv. Anim. Vet. Sci.*, 4(9), 449-457.

Takele, S., Woldemichael, K., Gashaw, M., Tassew, H., Yohannes, M., & Abdissa, A. (2018). Prevalence and drug susceptibility pattern of Salmonella isolates from apparently healthy slaughter cattle and personnel working at the Jimma municipal abattoir, south-West Ethiopia. *Tropical diseases, travel medicine and vaccines*, 4(1), 13.

Vial, F. (2019). Slaughterhouses as sources of data for animal health intelligence. *Frontiers in Veterinary Science*, 5, 332.

Walia, K., Argüello, H., Lynch, H., Grant, J., Leonard, F. C., Lawlor, P. G., ... & Duffy, G. (2017). The efficacy of different cleaning and disinfection procedures to reduce Salmonella and Enterobacteriaceae in the lairage environment of a pig abattoir. *International Journal of Food Microbiology*, 246, 64-71.

Zain Eldeen, A., Younes, A. M., Bazid, A., Eissa, N. M. A. I., Salman, M., &

AboElkhair, M. (2024). Influence of Some Herbals on Immunostimulation of Cellular Immunity in Experimentally Ndv-Vaccinated Chicks. Egyptian Journal of Veterinary Sciences, 55(5): 1171-1181.

Zain Eldeen, A., Younes, A. M., Bazid, A., Eissa, N. M. A. I., Salman, M., & AboElkhair, M. (2024). Influence of Some Herbals on Immunostimulation of Cellular Immunity in Experimentally Ndv-Vaccinated Chicks. *Egyptian Journal of Veterinary Sciences*, 55(5), 1171-1181.