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ABSTRACT

The aquaculture industry faces increasing challenges arising from the emergence
of fish and shrimp diseases, making immunomodulators (beneficial substances
that modify the immune response) an urgent necessity. For a long time,
researchers have focused on identifying suitable, cost-effective, and
environmentally safe immunostimulants. These products aim to enhance the
immune systems and antioxidant capacity of fish and shrimp, improving their
ability to resist pathogens. Fucoidan, a sulfated polysaccharide primarily derived
from brown seaweed, has emerged as a promising candidate due to its wide
range of biological functions. Fucoidan has garnered significant attention in
aquaculture due to its diverse beneficial properties. It is increasingly being
incorporated into aquafeed as a natural additive to improve the health and
productivity of farmed fish and shellfish. Alongside other major seaweed
polysaccharides like laminarin and alginic acid, fucoidan exhibits anti-
inflammatory, immunomodulatory, antioxidant, antiviral, antibacterial,
antitumor, anticoagulant, and growth-enhancing effects. This review focuses on
the beneficial impacts of fucoidan in aquatic animals, emphasizing its structural
features, extraction techniques, and therapeutic potential, with special attention
to findings from Egyptian research.
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1.

and sea urchins. Initially identified as
INTRODUCTION "fucoidan" upon its isolation from
Fucoidans are complex marine algae, this compound has
polysaccharides rich in L-fucose and drawn increasing interest over the last
sulfate groups, found predominantly in decade due to its multifaceted
brown algae and some marine bioactivities. These include
invertebrates such as sea cucumbers anticoagulants, antithrombotics,
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antivirals, anti-inflammatories,
antioxidants, anticancers, and
immunoregulatory  effects among
others. Its widespread availability from
various affordable seaweed species
makes fucoidan a highly attractive
target for developing pharmaceuticals
and functional foods. This article
consolidates current insights into the
structural characteristics and biological
properties of fucoidan derived from
brown algae and explores how these
attributes  influence its biological
efficacy.

In several Asian countries, seaweed
constitutes a fundamental part of
traditional diets and medicine. Brown
seaweeds, in particular, are known for
their polysaccharide content, including
carrageenan, alginate, and notably
fucoidan, which is mainly located in
the cell wall matrix. Fucoidan has been
shown to possess broad-spectrum
biological activities, ranging from
anticoagulant and antiviral to anti-
inflammatory and anticancer functions.
Recent studies have also reported that
it has potential applications in
pharmaceutical formulations, cosmetic
products, diagnostics, and adjunct
therapies. Research in both livestock
and aquaculture has highlighted
fucoidan’s positive health impacts due
to its biofunctional properties. This
review aims to summarize the utility of
fucoidan in aquatic species, with a
special focus on its relevance in
Egyptian aquaculture systems.

2. Structure of Fucoidan

Fucoidans, classified as fucose-
containing sulfated polysaccharides
(FCSPs), exhibit structural diversity
influenced by Dbiological source,
extraction timing, and species-specific
traits (Jayawardena et al., 2019). These
heteropolymers feature a fucose-
dominated backbone with variable
sulfation at C-2/C-4 positions, though
terminal residues often lack sulfate

groups (Li et al, 2023). Their
architecture  incorporates auxiliary
monosaccharides (xylose, mannose,

glucose, uronic acids) and
demonstrates either o (1—2) or a
(1-3) glycosidic linkages

(Zvyagintseva et al., 1999). Acetyl
moieties and sulfation at C-3 may
occur sporadically (Ale et al., 2011),
with molecular weights spanning 100-
1600 kDa (Zhang et al., 2015).

2.1.  Structural Variations _Across

Species

e Fucus vesiculosus: Predominantly
a (1—3)-linked fucose with C-4
sulfation; branching via o (1—2)/a
(1—4) bonds (Patankar et al.,
1993).

e Ascophyllum nodosum:
Alternating o (1-3)a (1—4)
linkages with 2-O-sulfation and
2,3-O-desulfation (Chevolot et al.,
1999).

e Fucus serratus: Alternating 3-/4-
linked fucopyranose chains, minor
xylose substitutions (Bilan et al.,
2006).

» Galactofucans and Novel
Configurations

Sargassum stenophyllum produces
galactofucans resembling sea
cucumber chondroitin sulfates,
featuring:

v' Type |: Low-sulfate, glucuronic
acid-rich chains.

v' Type 1l: Heterogeneous chains
with xylose, mannose, and uronic
acids (Duarte et al., 2001). S.
polycystum yields a  unique
sulfated galactofucan with 3-
linked fucopyranose backbones
and 4-sulfated 2-linked
galactopyranose branches.

» Laminariales and Chordariales
Derivatives

e Laminaria japonica: 75% 3-
linked fucopyranose residues;
65% molar branching at C-2
(Wang et al., 2010).
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L. longipes/S. cichorioides:
Mixed (1—-3)/ (1—4) (1-2)
linkages with C-2/C-4 sulfation
(Usoltseva et al., 2019).

Cladosiphon okamuranus:
Linear a (1—3)-fucopyranose
backbone; 50% C-4 sulfation,
occasional C-2 glucuronylation

(Nagaoka et al., 1999). This
interspecies variability
underscores the importance of
source selection for tailored
fucoidan applications, Table 1
shows the Chemical
compositions of some fucoidans.

Table 1. Chemical compositions of some fucoidans.

Brown seaweeds

Chemical composition

Reference

F. vesiculosus

fucose, sulfate

(Black et al., 1952, Nishino T
et al.,1994)

F. evanescens C. Ag

fucose/sulfate/acetate (1/1.23/0.36)

(Bilan et al., 2002)

F. distichus

fucose/sulfate/acetate (1/1.21/0.08)

(Bilan et al., 2004)

F. serratus L

fucose/sulfate/acetate (1/1/0.1)

(Bilan et al., 2006)

Lessonia vadose

fucose/sulfate (1/1.12)

(Chandia et al., 2008)

Macrocytis pyrifera

fucose/galactose (18/1), sulfate

(Black et al., 1952)

Pelvetia wrightii

fucose/galactose (10/1), sulfate

(Anno et al., 1966)

Undaria pinnatifida (Mekabu)

fucose/galactose (1/1.1), sulfate

(Lee et al., 2004)

Ascophyllum nodosum

fucose (49%), xylose (10%), GIcA(11%), sulfate

(Percival et al., 1968)

Himanthalia lorea and Bifurcaria

bifurcate

fucose, xylose, GICcA, sulfate

(Mian etal., 1973)

Padina pavonia

fucose, xylose, mannose, glucose, galactose,

sulfate

(Hussein et al., 1980)

Laminaria angustata

fucose/galactose/sulfate (9/1/9)

(Kitamura et al 1991)

Ecklonia kurome

fucose, galactose, mannose, xylose, GICcA, sulfate

(Nishino et al., 1989)

Sargassum stenophyllum

fucose, galactose, mannose, GIcA, glucose, xylose,

sulfate

(Duarate et al., 2001)

Adenocytis utricularis

fucose, galactose, mannose, sulfate

(Ponce et al., 2003)
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Hizikia fusiforme fucose, galactose, mannose, xylose, GIcA, sulfate

(Li etal., 2006)

Dictyota menstrualis fucose/xylose/uronicacid/galactose/sulfate
(1/0.8/0.7/0.8/0.4) and (1/0.3/0.4/1.5/1.3)

Spatoglossum schroederi fucose/xylose/galactose/sulfate (1/0.5/2/2)

3.

Fucoidan processing:
Polysaccharides, along with nucleic
acids and peptides, constitute the three
primary classes of biologically active
macromolecules (Munoz-Bonilla et al.,
2019). These carbohydrate polymers
perform essential cellular functions,
serving as structural components (e.g.,
cellulose and chitin in cell walls),
energy reserves (e.g., starch and
glycogen), and participating in cellular
signalling and hydration processes
(e.g., mucilage and alginic acid) (Amos
et al., 2019; Helle et al., 2018). In
brown algae, polysaccharides represent
up to 75% of dry biomass, with notable
examples including alginates,
cellulose, fucoidans, and laminarins
(DeJesus et al., 2015). Species-specific
analyses reveal varying concentrations:
Fucus (65.7% DW), Ascophyllum
(69.6% DW), Saccharina (57.8% DW),
and Sargassum (67.8% DW) (Afonso
et al., 2019). Fucoidans, in particular,
are sulfated L-fucose polymers that
occur in brown algal cell walls and
over 265 marine invertebrate genera
(Deniaud-Bouét et al., 2017). These
compounds contribute to cellular
integrity through interactions with
cellulose/hemicellulose networks and
play roles in  osmoregulation,
reproduction, and intercellular
communication (Zayed et al., 2018).
Structurally, algal fucoidans
demonstrate greater complexity than
their invertebrate counterparts,
featuring  heterogeneous branching
patterns (Li et al., 2017). The IUPAC
recognizes "fucoidans™ as an umbrella
term encompassing various sulfated
fucose polymers, including those
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initially ~ characterized by Kylin
(Citkowska et al., 2019). Research has
established structure-activity
relationships linking molecular
characteristics (e.g., sulfation patterns,
molecular weight) to biological effects.

v Bioactive Properties

Antitumor activity correlates with
sulfate content and branching (Van
Weelden et al., 2019). Anticoagulant
effects depend on the molecular weight
and sugar composition (Zhao et al.,
2012). Antiviral potency associates
with specific sulfation patterns (Wang
etal., 2017).

v Purity Considerations:
Co-extracted phenolics may confound
antioxidant assessments (Hifney et al.,
2016). Fractionation protocols
significantly impact bioactivity profiles
(Chauvierre et al., 2019). Experimental
evidence suggests that discrete
fucoidan fractions exhibit differential
bioactivities - for instance, certain
sulfation configurations demonstrate
selective antiviral action against HSV-
1, while distinct molecular weight
fractions show varied cytotoxicity
toward Caco-2 cells (Zayed et al.,
2019). These findings underscore the
importance of comprehensive
characterization ~ when  evaluating
fucoidan applications.

3.1. Downstream Processes

Fucoidans exist as negatively charged
heteropolymers embedded in complex
cellular matrices, where they interact
with various structural components
including alginate, cellulose, laminarin,

(Albuquerque et al., 2004)

(Rocha et al., 2005)




Journal of Current Veterinary Research, VVolume (7), issue (2), October 2025

polyphenolic compounds, and proteins
(Hahn et al., 2012). Their sulfate ester
groups confer both water solubility
(Thinh et al., 2013) and strong binding
affinity to adjacent cell wall
constituents, particularly polyphenolic
compounds (DeReviers et al., 1989).

These molecular interactions
necessitate  multistep  purification
protocols to isolate  high-purity

fucoidan fractions, typically involving:

» Sequential Processing Steps:
Initial pretreatment to disrupt algal
tissue.Selective extraction methods.
Final purification through ethanol
precipitation or cationic surfactant
complexation (Yang et al., 2017)

Pre-

Algae

» Purification Challenges:
Requirement for multiple washing
steps. Need for differential
precipitation techniques. Importance of
removing  co-extracted  impurities
(Zhang et al., 2020)

The complete isolation workflow, as
illustrated in Figure 1, systematically
addresses these challenges through
three critical phases: pretreatment,
extraction, and purification. This
comprehensive approach ensures the
removal of interfering substances while
preserving the structural integrity of
the target fucoidan molecules.

Purification and
chromatography

Extraction

harvesting treatment
N
*Species * Bleaching, * Hot water, *Jon exchange,
identification, * Deffating, * Enzyme- * Affinity, and
*Washing, * Polyphenols, assisted, *Size exclusion
o alginate, *Microwave- chromatography,
DW‘F‘g’ and protei_ns and assisted, * Dialysis and
*Milling mannitol + Ultrasound- fractionation
removal assisted, and
* Precipitation
with ethanol
or tensids
) ) - \ 4
Figure 1. Steps of fucoidan processing (Zayed et al.,2020).
3.1.1. Pre-Treatment Pre-treatment Optimization:
N _ Critical pre-extraction steps serve
Initial Processing: multiple purposes: (1) liberating

Freshly collected algal biomass
requires extensive washing with tap
water to eliminate sand particles and
epiphytic organisms before drying and
mechanical grinding. This  size
reduction step enhances the surface
area-to-mass ratio, facilitating
subsequent  extraction processes
(Chollet et al., 2016).
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fucoidans from their native matrix, (2)
enhancing extraction efficiency, and
(3) minimizing co-extraction of
interfering  compounds.  Common
approaches include:

Depigmentation and Delipidation:

Sequential treatment with organic
solvents (80-85% ethanol, acetone, or
toluene).Effective removal of
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chlorophylls, carotenoids, and lipids
without affecting anionic fucoidans
(Spicer et al., 2017).Parallel recovery
of valuable nutraceuticals
(fucoxanthin,  PUFAs,  fucosterol)
(DaCosta et al., 2019).

Polyphenol Elimination:
Avoidance of activated charcoal due to
nonspecific adsorption (Hahn et al.,

2012).Alternative formaldehyde-
ethanol mixtures for phlorotannin
crosslinking  (limited by toxicity

concerns) (Imbs et al., 2015). Critical
need for phenolic quantification in
final products (Gall et al., 2015)

Alginate Removal:

Adding ethanol to

the extract

washing

Treat to the
extract

Extraction using

Selective precipitation as calcium
alginate complexes (4% CaCl).
Filtration/centrifugation separation

(Balboa et al., 2013)

3.1.2. Extraction Methodologies:
Fucoidan's polyanionic nature permits
various extraction strategies:

Conventional Methods:

Aqueous extraction (hot/cold) with
ethanol precipitation.pH-controlled
systems (acidic/alkaline/buffered)
requiring neutralization (Ale et al.,
2013), Effects of solvents on the
extraction/purification of FCSPs are
shown in Figure 2.

Remove the impurities

_—

diluted acetic acid

* Lipids

* Terpenes — Require pre-
« Phenols treatments stages
* Pigments

Immersingand ———— Bleaching and defatting to

remove
* Pigments —
* Fatty acids

Require subsequent
purified stages

Enhances the crosslinking of
polymerization of
* Polyphenolic
contaminants
* Proteins
* Nucleic acids

Toxicity limits the
utilizations

Co-extraction with

> Further purification R

Figure 2. Effects of solvents on the extraction/purification of FCSPs (Jayawardena et

al., 2022).

Advanced Technigues:
Hydrothermal-assisted extraction
(HAE) with ultrasonic enhancement
(Garcia-Vaquero et al.,
2019).Subcritical  water  extraction
preserving native structure
(Alboofetileh et al., 2019). Enzyme-
assisted extraction (EAE) using
alginate lyase/cellulase (Qin et al.,
2018)
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Innovative Approaches:
Vacuume-assisted low-temperature
extraction.EDTA-mediated
simultaneous
extraction/depigmentation (Zhao et al.,
2018).

Scale-up Considerations:
Process optimization typically initiates
at bench scale (5-10 g biomass) to
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determine critical parameters (solvent
ratio, temperature, duration) before
industrial translation (500-1000 g
batches). Quality assessment employs
FTIR, monosaccharide analysis, and
elemental composition (Hahn et al.,
2016). This comprehensive approach
addresses both yield optimization and
structural preservation while
minimizing the co-extraction of
interfering compounds. The multi-
stage protocol ensures production of
high-purity fucoidans suitable for
pharmacological applications.

3.1.3. Separation Physical Methods

Filtration, dialysis, and centrifugation
processes are commonly employed for
both algal biomass and precipitates
during downstream processing
following pre-treatment and extraction
(Xing et al., 2013 and Lee et al., 2019).
Cross-flow filtration and water dialysis
typically utilize membranes with
specific molecular weight cutoffs
(MWCO) to isolate fucoidans from
smaller molecules, taking advantage of
fucoidans' high molecular weight
(Somasundaram et al., 2016). These
methods also enable fractionation,

separating low molecular weight
fucoidans (LMWEF) from their high
molecular weight counterparts
(HMWF) (Yoo et al, 2019).

Centrifugal concentrators (Vivaspin®)
with appropriate MWCO membranes
can simultaneously perform filtration,
concentration, and  fractionation,
similar to  protein  purification
protocols. However, when dealing with
large quantities or high concentrations
of salts and contaminants, these
concentrators become less practical
and cost-effective due to membrane
clogging and degradation issues.

3.1.4. Purification

Despite these purification steps,
residual contaminants often remain,
leaving the fucoidans in a crude state
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(Zayed et al., 2018). Some researchers
have implemented simple, non-
chromatographic methods such as
bleaching with NaCIlO2 in dilute HCI
followed by precipitation using
cetyltrimethylammonium bromide
(Ustyuzhanina et al., 2013), or cold
overnight incubation in calcium acetate
buffer (20 mM, pH 6.5-7.5) with
subsequent dialysis (Saboural et al.,
2014). Membrane filtration has also
proven effective for  producing
fucoidan  fractions of  varying
molecular weights (Garcia-Vaquero et
al., 2017).

Most  chromatographic  techniques
exploit the permanent negative charges
from sulfate ester groups on the

fucoidan  backbone for selective
capture. However, interference can
occur  from  carboxylated (e.g.,

alginate) and phosphorylated (e.g.,
nucleic acids) compounds (Hahn et al.,
2016 and Lee et al.,, 2012), making
solvent pH crucial during purification.
Options include using anion exchange
resins like DEAE-cellulose with 0.1 M
sodium phosphate buffer at pH 7.2
(Palanisamy et al., 2018), or cationic
dyes (e.g., toluidine blue), modified
resins, or chitosan in buffered solutions
(Zayed et al., 2018; Abdella et al.,
2020). Both anion exchange and dye

affinity  chromatography typically
require  high-concentration  NaCl
elution solvents, necessitating

additional purification steps like gel
permeation chromatography (Cong et
al., 2016) or dialysis (Palanisamy et al.,
2018) to remove salts, which increases
production costs.

Recent innovations include novel
purification  techniques such as
molecularly imprinted polymers (MIP)
for selective solid phase extraction of
fucoidans and other seaweed polymers
(Li et al.,, 2017 and Guthrie et al.,
2019), including MIPs modified with
deep eutectic solvents. Abdella et al.
(2020) developed an eco-friendly,
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time-efficient  purification  method cationic  thiazine  dyes.  These
using genipin-crosslinked toluidine procedures are summarized in Figure
blue immobilized on chitosan beads, 3.

leveraging fucoidans' affinity for

1 -
Pigments, oils,
Extr= defatted solids

met

Conventional
Solvent Extraction

Innowvative
methods

Acidic > Substrate Enzyme-
extraction = = assisted
= [ ]
(==

<
Neutral ; Microwave

extraction = PN assisted

=

=

= /M Ultrasound

Alkali = e R assisted

extraction =

a2

[ Centrifugation/filtration ]

o =
_ - @

—— (=)
Solid elements

[ Purification |

N

Figure 3. Procedures of fucoidan processing (Mensah et al., 2023).

4. Beneficial health effects of fucoidan in fish are illustrated in
fucoidan in aquatic organisms: The Figure 4
beneficial effects and health benefits of

Beneficial activities of Fucoidan in aquatic life

- e . N i . e
’“m \ i Roho labeo (Labeo rohita)
; \

800,
Q

Japanese tiger prawn
(Marsupenaeus japonicas)

| )

Antioxidant
b \

, Fucoidan
) Brown seaweeds Red sea bream
\ (Pagrus major)

Growth promoters

immmunomodulator

Chinese white shrimp .
(Fenneropenaeus chinensis) Antiviral

Antibacterial N & ‘
o N 3
African catfish Banamuqdl
3 7 (Lates calcarifer)
(Clarias gariepinus)

Black tiger shrimp Yellow catfish Sutchi cat fish
(Penaeus monodon ) (Pelteobagrus fulvidraco) (Pangasius hypophthalmus)

Figure 4. Beneficial application of fucoidan in aquaculture (Saeed et al., 2021).
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4.1. Growth enhancement by fucoidan
Fucoidan has demonstrated multiple
biological effects in vertebrates,
though its growth-enhancing properties
in fish remain relatively understudied.
Research by Traifalgar et al. (2010)
revealed that supplementing the diet of
Marsupenaeus japonicas juveniles with
increasing fucoidan concentrations
significantly enhanced body weight
(BW), weight gain, specific growth

rate, and protein retention while
reducing feed conversion ratios.
Similar growth improvements were

observed in Penaeus monodon with
0.1-0.3% dietary fucoidan
supplementation
(Sivagnanavelmurugan et al., 2014).
Asian seabass showed enhanced
growth at 1% fucoidan inclusion
(Tuller et al., 2012), while Labeo
rohita exhibited synergistic growth
benefits when fucoidan was combined
with methionine (Nazir et al., 2017).
Studies on juvenile barramundi (Lates
calcarifer)  demonstrated  superior
growth performance with 10 g/kg
fucoidan supplementation compared to
0.5 g/kg, as evidenced by increased
weight, length, and muscle fiber area
(Tuller et al., 2014). The growth-
promoting  effects appear  dose-
dependent, as reported by Hossain et
al. (2016) and confirmed in M.
japonicas  after 8  weeks of
supplementation (Traifalgar et al.,
2010). Potential mechanisms include
myostatin inhibition (Ramazanov et al.,
2003) and improved feed utilization,
supported by reduced blood urea
nitrogen and AST levels indicating
enhanced protein metabolism and
organ function (Sony et al., 2019).
Enhanced digestive enzyme secretion
following fucoidan supplementation
may contribute to better nutrient
utilization (Ozorio et al., 2015).
Similar growth benefits were observed
with algal meals from Ascophyllum
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nodosum and U. pinnatifida in red sea
bream (Yone et al., 1986; Nakagawa et
al., 1997). Notably, fucoidan
modulates  lipid metabolism by
converting cholesterol to bile acids
without altering whole-body
composition, with maximal lipid
content observed at 0.4%
supplementation (Sony et al., 2019).
This lipid-enhancing effect was also
documented in M.  japonicas
(Traifalgar et al., 2010). Higher
fucoidan concentrations (>1%) proved
effective for sutchi catfish
(Pangasianodon hypophthalmus)
growth promotion (Prabu et al., 2016).

4.2. Antioxidative activity of fucoidan
Fucoidan serves as a powerful natural
antioxidant with demonstrated efficacy
in counteracting disorders linked to
oxidative stress. Its  antioxidant
mechanism involves the suppression of
reactive oxygen species, particularly
hydroxyl and superoxide radicals,
thereby preventing lipid peroxidation.
Research  indicates  that these
antioxidant properties are strongly
influenced by two key structural
features: the degree of sulfation and the
molecular weight of the polysaccharide
(Li et al., 2006; Wang et al., 2008).

Experimental evidence shows that
fucoidan supplementation in diets can
significantly  reduce markers of
oxidative damage. In yellow catfish
(Pelteobagrus fulvidraco), fucoidan
administration led to decreased lipid
peroxidation (Yang et al., 2014).
Similar antioxidant effects were
observed in zebrafish (Danio rerio)
models and juvenile red sea bream
(Pagrus major) when treated with
fucoidan extracted from Ecklonia cava
(Kim et al., 2014; Sony et al., 2019).
These findings collectively highlight
fucoidan's potential as an effective
natural compound for managing
oxidative stress in aquatic species.
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4.3. Immunomodulatory,
Antimicrobial, and Antiviral Activities
Sulfated fucoidans have emerged as
promising  immunostimulants  and
functional feed supplements in aquatic
farming systems, drawing considerable
attention from both industry and
researchers (El-Boshy et al., 2014;
Peixoto et al., 2016). These marine
polysaccharides potentiate macrophage
activity, enhancing phagocytic capacity
and lysozyme secretion (Choi et al.,
2005; Yang et al., 2008). Experimental
evidence demonstrates that Sargassum
fusiforme-derived polysaccharide
supplements  (0.1-0.5% inclusion)
significantly ~ increased = muscular
lysozyme activity in Fenneropenaeus
chinensis (Huang et al, 2006).
Comparable immunoenhancement has
been documented in teleost species,
where dietary fucoidan
supplementation improved circulating
lysozyme activity, serum protein
profiles, and antioxidant capacity.
Haematological parameters in
both Pelteobagrus fulvidraco (Yang et
al., 2014) and Pagrus major juveniles
(Sony et al., 2019).

Pathogen Inhibition _and Immune
Modulation

The compound demonstrates notable
antimicrobial efficacy against multiple
aquatic pathogens (Immanuel et al.,
2012; Kitikiew et al.,, 2013). Its
immunostimulatory mechanism
involves dual activation of innate
immune components (natural Kkiller
cells). Adaptive immune elements (T
cells, dendritic cells) thereby establish
robust antimicrobial defenses. Studies
utilizing Sargassum polycystum-
extracted fucoidan revealed protective

effects in Penaeus
monodon against Escherichia
coli, Staphylococcus aureus,

and Vibrio harveyi infections
(Chotigeat et al., 2004; Immanuel et
al., 2012). Similarly, Turbinaria ornata-
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sourced fucoidan exhibited inhibitory
activity against Yersinia
enterocolitica and Vibrio
parahaemolyticus in ornamental
marine species (Marudhupandi and
Kumar, 2013).

Disease Resistance Enhancement
Beyond antimicrobial action, fucoidan
(3% dietary inclusion) has shown
immunopotentiating effects in
Pangasianodon hypophthalmus (Prabu
et al., 2016). Labeo rohita (Nazir et al.,
2017). Notably, Laminaria japonica-
derived fucoidan increased resistance
in Clarias

gariepinus against Aeromonas
hydrophila challenge (El-Boshy et al.,
2014), while also improving growth
performance and Vibrio
parahaemolyticus resistance in Penaeus
monodon (Sivagnanavelmurugan et al.,
2014).

Antiviral Potential

The sulfated polysaccharide presents
antiviral properties with favourable
toxicity profiles compared to synthetic
antivirals. Its dual  mechanism
involves:  Blocking viral entry.
Suppressing viral replication (Mandal
et al., 2007; Ponce et al., 2003). The
sulfate moieties appear critical for
immunostimulation  against  viral
pathogens (Ponce et al., 2003).
Practical applications include:
Cladosiphon okamuranus fucoidan-
mediated protection of Marsupenaeus
japonicus against WSSV (Takahashi et
al., 1998). WSSV neutralization
in Penaeus monodon via phagocytosis-
activating protein gene regulation
(Deachamag et al., 2006).

5. Applied Research on Fucoidan in
Egyptian Aquaculture

Table 2 summarizes key research
articles and reviews on fucoidan in
Egypt, providing valuable insights for
future studies. These works highlight
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fucoidan’'s potential as a sustainable

immunity, and disease resistance in

feed additive to enhance growth, aquaculture species.
Table 2. Applied research on Fucoidan in aquaculture in Egypt.
Research subject Type of research Reference
The anticancer activity Experimental study (Al-Duais et
al., 2025)
Seed treatment with macroalgal-derived fucoidan and nanohydroxyapatite mitigates Experimental study (Gomaa et al.,
2025)
Protective Effects against Osteoarthritis Experimental study (Chiang et al.,
2024)
preparation, evaluation, and cytotoxicity study Review article (Obiedallah et
al., 2024)
Anti-Inflammatory, Antidiabetic, Experimental study (Deaconu et
al., 2024)
The Antioxidant and Anti-Inflammatory Properties Experimental study (Brezoiu et
al., 2024)
Recent biotechnological applications Review article (Eladl et al.,
2024)
Optimizing the fucoidan extraction Experimental study (El-Sheekh et
al., 2024)
Fucoidan in Delivery Systems Review article (Haggag et al.,
2023)
Fucoidan's Molecular Review article (Zayed et al.,
2023)
Treat gastric ulcer injury through managing inflammation. Experimental study (Selim et al.,
2023)
Fucoidan as probiotic Review article (Elwakil et al.,
2023)
Chemical Composition, Antioxidant, and Antitumor Activity Experimental study (El-Sheekh et
al., 2023)
Antiangiogenic drugs Experimental study (Abdollah et
al., 2023)
A spectroscopic response Experimental study (Abdella et
al., 2023)
Characterization and Cytotoxic Activity Experimental study (Zayed et al.,
2023)
Selective 2-desulfation of tetrasaccharide-repeating sulfated fucans Experimental study (Kimetal.,
2022)
The Sea Cucumber Thyonella gemmata Experimental study (Dwivedi et
al., 2023)
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Fucoidan/hyaluronic Experimental study (Moustafa et
al., 2023)
Health benefits and potential applications of fucoidan Review article (Abdel-Latif
et al., 2022)
Expression and Biochemical Characterization Experimental study (Qiu et al.,
2022)
Effect against Enterococcus faecalis Experimental study (Tang et al.,
2022)
Sulfated Galactofucans Review article (Zayed et al.,
2022)
In Vitro Evaluation and In Vivo Anti-Inflammatory Study Experimental study (Abdelkader
et al., 2022)
Curative effects of fucoidan on acetic acid-induced ulcerative colitis Experimental study (Bagalagel et
al., 2022)
The prospective effect of fucoidan on splenic dysfunction Experimental study (Basha et al.,
2022)
Anticancer, Enhanced Antibacterial, and Free Radical Scavenging Potential of | Experimental study (Rajeshkumar
Fucoidan- et al., 2021)
Comparison & Antioxidant Activity of Different Molecular Weight Fractions Experimental study (Yuetal.,
2021)
Synthesis of nanoparticles and their potential applications Review article (Yosrietal.,
2021)
In vitro biological activities and in vivo hepatoprotection Review article (Atyaetal.,
2021)
Fucoidan ameliorates acute and sub-chronic in vivo toxicity Experimental study (Mahgoub et
al., 2021)
Growth Behavior and Blood Metabolites and Toxic Effects Experimental study (Abdel-
Warith et al.,
2021)
Modulates hepato-renal oxidative stress and DNA damage Experimental study (Abdel-Daim
et al., 2020)
Growth and metastasis of pancreatic cancer Experimental study (Etman et al.,
2020)
Protection against damage in cardiac, hepatic, and renal tissues Experimental study (Abdel-Daim
et al., 2020)
Hepatocellular Carcinoma Experimental study (El-Far et al.,
2020)
Purity, Physicochemical & Chemical Properties Review article (Zayed et al.,
2020)
The effect on growth performance, intestinal pathology, and antioxidant Experimental study (Mahgoub et
al., 2020)
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Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries Experimental study (Aleissa et al.,
2020)
the impact of abiotic stress Experimental study (El-Katony et
al., 2020)
Downstream Processes and Recent Applications Review article (Zayed et al.,
2020)
Effects on the hematic indicators and antioxidative responses Experimental study (Abdel-Daim
et al., 2020)
Chitosan-toluidine blue beads for purification of fucoidans Review article (Abdella et
al., 2019)
A natural biopolymer in cancer combating Experimental study (Etman et al.,
2019)
Molecular Mechanisms Reviewarticle (Sajadimajd
etal., 2019)
Challenges and opportunities Review article (Zayed et al.,
2019)
Induced hepatic, renal, and cardiac oxidative stress and inflammatory injuries Experimental study (AlKahtane et
al., 2019)
Treatment of pancreatic cancer Review article (Etman et al.,
2019)
Physicochemical Comparison properties Experimental study (Luetal,
2018)
Antioxidant properties Experimental study (Hifney et al.,
2018)
Physicochemical and Biological Characterization Experimental study (Zayed et al.,
2016)
Suppressing oxidative stress and inflammatory cytokines Experimental study (Heeba et al.,
2015)
Enhancement the non-specific immune response and disease resistance Experimental study (El-Boshy et
al., 2014)

and
CONCLUSIONS AND fish,
RECOMMENDATIONS
Brown seaweeds represent a rich

Egyptian

immunostimulant properties in
special emphasis
aquaculture

marine resource containing numerous
bioactive compounds, particularly
sulfated polysaccharides like fucoidan
(FCD). This comprehensive review
examines FCD's biological activities
and explores its potential as a
functional aquafeed ingredient for
finfish species. Our analysis highlights
FCD's growth-promoting, antioxidant,
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Additionally, we detail critical aspects
of fucoidan production, extraction
methods, and structural characteristics
from brown seaweeds. This review
serves to promote awareness of brown
algal fucoidans as both a valuable
research subject and a sustainable
material for industrial applications in
aquaculture and beyond. The findings
underscore the need for further
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research to unlock FCD's full potential
as a natural alternative in animal
nutrition and health management.
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