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ABSTRACT 

The aquaculture industry faces increasing challenges arising from the emergence 
of fish and shrimp diseases, making immunomodulators (beneficial substances 
that modify the immune response) an urgent necessity. For a long time, 
researchers have focused on identifying suitable, cost-effective, and 
environmentally safe immunostimulants. These products aim to enhance the 
immune systems and antioxidant capacity of fish and shrimp, improving their 
ability to resist pathogens. Fucoidan, a sulfated polysaccharide primarily derived 
from brown seaweed, has emerged as a promising candidate due to its wide 
range of biological functions. Fucoidan has garnered significant attention in 
aquaculture due to its diverse beneficial properties. It is increasingly being 
incorporated into aquafeed as a natural additive to improve the health and 
productivity of farmed fish and shellfish. Alongside other major seaweed 
polysaccharides like laminarin and alginic acid, fucoidan exhibits anti-
inflammatory, immunomodulatory, antioxidant, antiviral, antibacterial, 
antitumor, anticoagulant, and growth-enhancing effects. This review focuses on 
the beneficial impacts of fucoidan in aquatic animals, emphasizing its structural 
features, extraction techniques, and therapeutic potential, with special attention 
to findings from Egyptian research. 
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1.

INTRODUCTION 
Fucoidans are complex 

polysaccharides rich in L-fucose and 

sulfate groups, found predominantly in 

brown algae and some marine 

invertebrates such as sea cucumbers 

and sea urchins. Initially identified as 

"fucoidan" upon its isolation from 

marine algae, this compound has 

drawn increasing interest over the last 

decade due to its multifaceted 

bioactivities.These include 

anticoagulants, antithrombotics, 
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antivirals, anti-inflammatories, 

antioxidants, anticancers, and 

immunoregulatory effects among 

others. Its widespread availability from 

various affordable seaweed species 

makes fucoidan a highly attractive 

target for developing pharmaceuticals 

and functional foods. This article 

consolidates current insights into the 

structural characteristics and biological 

properties of fucoidan derived from 

brown algae and explores how these 

attributes influence its biological 

efficacy. 

In several Asian countries, seaweed 

constitutes a fundamental part of 

traditional diets and medicine. Brown 

seaweeds, in particular, are known for 

their polysaccharide content, including 

carrageenan, alginate, and notably 

fucoidan, which is mainly located in 

the cell wall matrix. Fucoidan has been 

shown to possess broad-spectrum 

biological activities, ranging from 

anticoagulant and antiviral to anti-

inflammatory and anticancer functions. 

Recent studies have also reported that 

it has potential applications in 

pharmaceutical formulations, cosmetic 

products, diagnostics, and adjunct 

therapies. Research in both livestock 

and aquaculture has highlighted 

fucoidan’s positive health impacts due 

to its biofunctional properties. This 

review aims to summarize the utility of 

fucoidan in aquatic species, with a 

special focus on its relevance in 

Egyptian aquaculture systems. 

2. Structure of Fucoidan 

Fucoidans, classified as fucose-

containing sulfated polysaccharides 

(FCSPs), exhibit structural diversity 

influenced by biological source, 

extraction timing, and species-specific 

traits (Jayawardena et al., 2019). These 

heteropolymers feature a fucose-

dominated backbone with variable 

sulfation at C-2/C-4 positions, though 

terminal residues often lack sulfate 

groups (Li et al., 2023). Their 

architecture incorporates auxiliary 

monosaccharides (xylose, mannose, 

glucose, uronic acids) and 

demonstrates either α (1→2) or α 

(1→3) glycosidic linkages 

(Zvyagintseva et al., 1999). Acetyl 

moieties and sulfation at C-3 may 

occur sporadically (Ale et al., 2011), 

with molecular weights spanning 100–

1600 kDa (Zhang et al., 2015). 

2.1. Structural Variations Across 

Species 

 Fucus vesiculosus: Predominantly 

α (1→3)-linked fucose with C-4 

sulfation; branching via α (1→2)/α 

(1→4) bonds (Patankar et al., 

1993).  

 Ascophyllum nodosum: 

Alternating α (1→3)/α (1→4) 

linkages with 2-O-sulfation and 

2,3-O-desulfation (Chevolot et al., 

1999).  

 Fucus serratus: Alternating 3-/4-

linked fucopyranose chains, minor 

xylose substitutions (Bilan et al., 

2006). 

 Galactofucans and Novel 

Configurations 
Sargassum stenophyllum produces 

galactofucans resembling sea 

cucumber chondroitin sulfates, 

featuring: 

 Type I: Low-sulfate, glucuronic 

acid-rich chains.  

 Type II: Heterogeneous chains 

with xylose, mannose, and uronic 

acids (Duarte et al., 2001). S. 

polycystum yields a unique 

sulfated galactofucan with 3-

linked fucopyranose backbones 

and 4-sulfated 2-linked 

galactopyranose branches. 

 Laminariales and Chordariales 

Derivatives 

 Laminaria japonica: 75% 3-

linked fucopyranose residues; 

65% molar branching at C-2 

(Wang et al., 2010).  
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 L. longipes/S. cichorioides: 

Mixed (1→3)/ (1→4)/ (1→2) 

linkages with C-2/C-4 sulfation 

(Usoltseva et al., 2019).  

 Cladosiphon okamuranus: 

Linear α (1→3)-fucopyranose 

backbone; 50% C-4 sulfation, 

occasional C-2 glucuronylation 

(Nagaoka et al., 1999). This 

interspecies variability 

underscores the importance of 

source selection for tailored 

fucoidan applications, Table 1 

shows the Chemical 

compositions of some fucoidans. 

 

Table 1. Chemical compositions of some fucoidans. 
 

Brown seaweeds Chemical composition  Reference 

F. vesiculosus fucose, sulfate (Black et al.,1952, Nishino T 

et al.,1994) 

F. evanescens C. Ag fucose/sulfate/acetate (1/1.23/0.36) (Bilan et al., 2002) 

F. distichus fucose/sulfate/acetate (1/1.21/0.08)  (Bilan et al., 2004) 

F. serratus L fucose/sulfate/acetate (1/1/0.1) (Bilan et al., 2006) 

Lessonia vadose fucose/sulfate (1/1.12) (Chandía et al., 2008) 

Macrocytis pyrifera fucose/galactose (18/1), sulfate (Black et al., 1952) 

Pelvetia wrightii fucose/galactose (10/1), sulfate (Anno et al., 1966) 

Undaria pinnatifida (Mekabu)  fucose/galactose (1/1.1), sulfate  (Lee et al., 2004) 

Ascophyllum nodosum fucose (49%), xylose (10%), GlcA(11%), sulfate  (Percival et al., 1968) 

Himanthalia lorea and Bifurcaria 

bifurcate 

fucose, xylose, GlcA, sulfate (Mian et al., 1973) 

Padina pavonia fucose, xylose, mannose, glucose, galactose, 

sulfate 

(Hussein et al., 1980) 

Laminaria angustata fucose/galactose/sulfate (9/1/9) (Kitamura et al 1991) 

Ecklonia kurome fucose, galactose, mannose, xylose, GlcA, sulfate (Nishino et al., 1989) 

Sargassum stenophyllum fucose, galactose, mannose, GlcA, glucose, xylose, 

sulfate 

(Duarate et al., 2001) 

Adenocytis utricularis fucose, galactose, mannose, sulfate (Ponce et al., 2003) 
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Hizikia fusiforme fucose, galactose, mannose, xylose, GlcA, sulfate  (Li et al., 2006) 

Dictyota menstrualis fucose/xylose/uronicacid/galactose/sulfate 

(1/0.8/0.7/0.8/0.4) and (1/0.3/0.4/1.5/1.3) 

(Albuquerque et al., 2004) 

Spatoglossum schroederi fucose/xylose/galactose/sulfate (1/0.5/2/2) (Rocha et al., 2005) 

3. 

Fucoidan processing:  

Polysaccharides, along with nucleic 

acids and peptides, constitute the three 

primary classes of biologically active 

macromolecules (Munoz-Bonilla et al., 

2019). These carbohydrate polymers 

perform essential cellular functions, 

serving as structural components (e.g., 

cellulose and chitin in cell walls), 

energy reserves (e.g., starch and 

glycogen), and participating in cellular 

signalling and hydration processes 

(e.g., mucilage and alginic acid) (Amos 

et al., 2019; Helle et al., 2018). In 

brown algae, polysaccharides represent 

up to 75% of dry biomass, with notable 

examples including alginates, 

cellulose, fucoidans, and laminarins 

(DeJesus et al., 2015). Species-specific 

analyses reveal varying concentrations: 

Fucus (65.7% DW), Ascophyllum 

(69.6% DW), Saccharina (57.8% DW), 

and Sargassum (67.8% DW) (Afonso 

et al., 2019). Fucoidans, in particular, 

are sulfated L-fucose polymers that 

occur in brown algal cell walls and 

over 265 marine invertebrate genera 

(Deniaud-Bouët et al., 2017). These 

compounds contribute to cellular 

integrity through interactions with 

cellulose/hemicellulose networks and 

play roles in osmoregulation, 

reproduction, and intercellular 

communication (Zayed et al., 2018). 

Structurally, algal fucoidans 

demonstrate greater complexity than 

their invertebrate counterparts, 

featuring heterogeneous branching 

patterns (Li et al., 2017). The IUPAC 

recognizes "fucoidans" as an umbrella 

term encompassing various sulfated 

fucose polymers, including those 

initially characterized by Kylin 

(Citkowska et al., 2019). Research has 

established structure-activity 

relationships linking molecular 

characteristics (e.g., sulfation patterns, 

molecular weight) to biological effects. 

 Bioactive Properties 
Antitumor activity correlates with 

sulfate content and branching (Van 

Weelden et al., 2019). Anticoagulant 

effects depend on the molecular weight 

and sugar composition (Zhao et al., 

2012). Antiviral potency associates 

with specific sulfation patterns (Wang 

et al., 2017). 

 Purity Considerations: 

Co-extracted phenolics may confound 

antioxidant assessments (Hifney et al., 

2016). Fractionation protocols 

significantly impact bioactivity profiles 

(Chauvierre et al., 2019). Experimental 

evidence suggests that discrete 

fucoidan fractions exhibit differential 

bioactivities - for instance, certain 

sulfation configurations demonstrate 

selective antiviral action against HSV-

1, while distinct molecular weight 

fractions show varied cytotoxicity 

toward Caco-2 cells (Zayed et al., 

2019). These findings underscore the 

importance of comprehensive 

characterization when evaluating 

fucoidan applications. 

3.1. Downstream Processes 

 Fucoidans exist as negatively charged 

heteropolymers embedded in complex 

cellular matrices, where they interact 

with various structural components 

including alginate, cellulose, laminarin, 
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polyphenolic compounds, and proteins 

(Hahn et al., 2012). Their sulfate ester 

groups confer both water solubility 

(Thinh et al., 2013) and strong binding 

affinity to adjacent cell wall 

constituents, particularly polyphenolic 

compounds (DeReviers et al., 1989). 

These molecular interactions 

necessitate multistep purification 

protocols to isolate high-purity 

fucoidan fractions, typically involving: 

 Sequential Processing Steps: 

Initial pretreatment to disrupt algal 

tissue.Selective extraction methods. 

Final purification through ethanol 

precipitation or cationic surfactant 

complexation (Yang et al., 2017) 

 Purification Challenges: 

Requirement for multiple washing 

steps. Need for differential 

precipitation techniques. Importance of 

removing co-extracted impurities 

(Zhang et al., 2020) 

The complete isolation workflow, as 

illustrated in Figure 1, systematically 

addresses these challenges through 

three critical phases: pretreatment, 

extraction, and purification. This 

comprehensive approach ensures the 

removal of interfering substances while 

preserving the structural integrity of 

the target fucoidan molecules. 

 

 

Figure 1. Steps of fucoidan processing (Zayed et al.,2020). 

3.1.1. Pre-Treatment  

Initial Processing: 
Freshly collected algal biomass 

requires extensive washing with tap 

water to eliminate sand particles and 

epiphytic organisms before drying and 

mechanical grinding. This size 

reduction step enhances the surface 

area-to-mass ratio, facilitating 

subsequent extraction processes 

(Chollet et al., 2016). 

Pre-treatment Optimization: 
Critical pre-extraction steps serve 

multiple purposes: (1) liberating 

fucoidans from their native matrix, (2) 

enhancing extraction efficiency, and 

(3) minimizing co-extraction of 

interfering compounds. Common 

approaches include: 

Depigmentation and Delipidation: 
Sequential treatment with organic 

solvents (80-85% ethanol, acetone, or 

toluene).Effective removal of 
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chlorophylls, carotenoids, and lipids 

without affecting anionic fucoidans 

(Spicer et al., 2017).Parallel recovery 

of valuable nutraceuticals 

(fucoxanthin, PUFAs, fucosterol) 

(DaCosta et al., 2019). 

Polyphenol Elimination: 
Avoidance of activated charcoal due to 

nonspecific adsorption (Hahn et al., 

2012).Alternative formaldehyde-

ethanol mixtures for phlorotannin 

crosslinking (limited by toxicity 

concerns) (Imbs et al., 2015). Critical 

need for phenolic quantification in 

final products (Gall et al., 2015) 

Alginate Removal: 

Selective precipitation as calcium 

alginate complexes (4% CaCl). 

Filtration/centrifugation separation 

(Balboa et al., 2013) 

3.1.2. Extraction Methodologies: 
Fucoidan's polyanionic nature permits 

various extraction strategies: 

Conventional Methods: 
Aqueous extraction (hot/cold) with 

ethanol precipitation.pH-controlled 

systems (acidic/alkaline/buffered) 

requiring neutralization (Ale et al., 

2013), Effects of solvents on the 

extraction/purification of FCSPs are 

shown in Figure 2.  

 

Figure 2. Effects of solvents on the extraction/purification of FCSPs (Jayawardena et 

al., 2022). 

Advanced Techniques: 
Hydrothermal-assisted extraction 

(HAE) with ultrasonic enhancement 

(Garcia-Vaquero et al., 

2019).Subcritical water extraction 

preserving native structure 

(Alboofetileh et al., 2019). Enzyme-

assisted extraction (EAE) using 

alginate lyase/cellulase (Qin et al., 

2018) 

Innovative Approaches: 
Vacuum-assisted low-temperature 

extraction.EDTA-mediated 

simultaneous 

extraction/depigmentation (Zhao et al., 

2018). 

Scale-up Considerations: 
Process optimization typically initiates 

at bench scale (5-10 g biomass) to 
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determine critical parameters (solvent 

ratio, temperature, duration) before 

industrial translation (500-1000 g 

batches). Quality assessment employs 

FTIR, monosaccharide analysis, and 

elemental composition (Hahn et al., 

2016). This comprehensive approach 

addresses both yield optimization and 

structural preservation while 

minimizing the co-extraction of 

interfering compounds. The multi-

stage protocol ensures production of 

high-purity fucoidans suitable for 

pharmacological applications. 

3.1.3. Separation Physical Methods  

Filtration, dialysis, and centrifugation 

processes are commonly employed for 

both algal biomass and precipitates 

during downstream processing 

following pre-treatment and extraction 

(Xing et al., 2013 and Lee et al., 2019). 

Cross-flow filtration and water dialysis 

typically utilize membranes with 

specific molecular weight cutoffs 

(MWCO) to isolate fucoidans from 

smaller molecules, taking advantage of 

fucoidans' high molecular weight 

(Somasundaram et al., 2016). These 

methods also enable fractionation, 

separating low molecular weight 

fucoidans (LMWF) from their high 

molecular weight counterparts 

(HMWF) (Yoo et al., 2019). 

Centrifugal concentrators (Vivaspin®) 

with appropriate MWCO membranes 

can simultaneously perform filtration, 

concentration, and fractionation, 

similar to protein purification 

protocols. However, when dealing with 

large quantities or high concentrations 

of salts and contaminants, these 

concentrators become less practical 

and cost-effective due to membrane 

clogging and degradation issues. 

3.1.4. Purification  

Despite these purification steps, 

residual contaminants often remain, 

leaving the fucoidans in a crude state 

(Zayed et al., 2018). Some researchers 

have implemented simple, non-

chromatographic methods such as 

bleaching with NaClO2 in dilute HCl 

followed by precipitation using 

cetyltrimethylammonium bromide 

(Ustyuzhanina et al., 2013), or cold 

overnight incubation in calcium acetate 

buffer (20 mM, pH 6.5-7.5) with 

subsequent dialysis (Saboural et al., 

2014). Membrane filtration has also 

proven effective for producing 

fucoidan fractions of varying 

molecular weights (Garcia-Vaquero et 

al., 2017). 

Most chromatographic techniques 

exploit the permanent negative charges 

from sulfate ester groups on the 

fucoidan backbone for selective 

capture. However, interference can 

occur from carboxylated (e.g., 

alginate) and phosphorylated (e.g., 

nucleic acids) compounds (Hahn et al., 

2016 and Lee et al., 2012), making 

solvent pH crucial during purification. 

Options include using anion exchange 

resins like DEAE-cellulose with 0.1 M 

sodium phosphate buffer at pH 7.2 

(Palanisamy et al., 2018), or cationic 

dyes (e.g., toluidine blue), modified 

resins, or chitosan in buffered solutions 

(Zayed et al., 2018; Abdella et al., 

2020). Both anion exchange and dye 

affinity chromatography typically 

require high-concentration NaCl 

elution solvents, necessitating 

additional purification steps like gel 

permeation chromatography (Cong et 

al., 2016) or dialysis (Palanisamy et al., 

2018) to remove salts, which increases 

production costs. 

Recent innovations include novel 

purification techniques such as 

molecularly imprinted polymers (MIP) 

for selective solid phase extraction of 

fucoidans and other seaweed polymers 

(Li et al., 2017 and Guthrie et al., 

2019), including MIPs modified with 

deep eutectic solvents. Abdella et al. 

(2020) developed an eco-friendly, 
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time-efficient purification method 

using genipin-crosslinked toluidine 

blue immobilized on chitosan beads, 

leveraging fucoidans' affinity for 

cationic thiazine dyes. These 

procedures are summarized in Figure 

3. 

 
 

Figure 3. Procedures of fucoidan processing (Mensah et al., 2023). 

 

4. Beneficial health effects of 

fucoidan in aquatic organisms: The 

beneficial effects and health benefits of 

fucoidan in fish are illustrated in 

Figure 4 

 

Figure 4. Beneficial application of fucoidan in aquaculture (Saeed et al., 2021). 
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4.1. Growth enhancement by fucoidan 
Fucoidan has demonstrated multiple 

biological effects in vertebrates, 

though its growth-enhancing properties 

in fish remain relatively understudied. 

Research by Traifalgar et al. (2010) 

revealed that supplementing the diet of 

Marsupenaeus japonicas juveniles with 

increasing fucoidan concentrations 

significantly enhanced body weight 

(BW), weight gain, specific growth 

rate, and protein retention while 

reducing feed conversion ratios. 

Similar growth improvements were 

observed in Penaeus monodon with 

0.1-0.3% dietary fucoidan 

supplementation 

(Sivagnanavelmurugan et al., 2014). 

Asian seabass showed enhanced 

growth at 1% fucoidan inclusion 

(Tuller et al., 2012), while Labeo 

rohita exhibited synergistic growth 

benefits when fucoidan was combined 

with methionine (Nazir et al., 2017). 

Studies on juvenile barramundi (Lates 

calcarifer) demonstrated superior 

growth performance with 10 g/kg 

fucoidan supplementation compared to 

0.5 g/kg, as evidenced by increased 

weight, length, and muscle fiber area 

(Tuller et al., 2014). The growth-

promoting effects appear dose-

dependent, as reported by Hossain et 

al. (2016) and confirmed in M. 

japonicas after 8 weeks of 

supplementation (Traifalgar et al., 

2010). Potential mechanisms include 

myostatin inhibition (Ramazanov et al., 

2003) and improved feed utilization, 

supported by reduced blood urea 

nitrogen and AST levels indicating 

enhanced protein metabolism and 

organ function (Sony et al., 2019). 

Enhanced digestive enzyme secretion 

following fucoidan supplementation 

may contribute to better nutrient 

utilization (Ozório et al., 2015). 

Similar growth benefits were observed 

with algal meals from Ascophyllum 

nodosum and U. pinnatifida in red sea 

bream (Yone et al., 1986; Nakagawa et 

al., 1997). Notably, fucoidan 

modulates lipid metabolism by 

converting cholesterol to bile acids 

without altering whole-body 

composition, with maximal lipid 

content observed at 0.4% 

supplementation (Sony et al., 2019). 

This lipid-enhancing effect was also 

documented in M. japonicas 

(Traifalgar et al., 2010). Higher 

fucoidan concentrations (≥1%) proved 

effective for sutchi catfish 

(Pangasianodon hypophthalmus) 

growth promotion (Prabu et al., 2016). 

4.2. Antioxidative activity of fucoidan  

Fucoidan serves as a powerful natural 

antioxidant with demonstrated efficacy 

in counteracting disorders linked to 

oxidative stress. Its antioxidant 

mechanism involves the suppression of 

reactive oxygen species, particularly 

hydroxyl and superoxide radicals, 

thereby preventing lipid peroxidation. 

Research indicates that these 

antioxidant properties are strongly 

influenced by two key structural 

features: the degree of sulfation and the 

molecular weight of the polysaccharide 

(Li et al., 2006; Wang et al., 2008). 

Experimental evidence shows that 

fucoidan supplementation in diets can 

significantly reduce markers of 

oxidative damage. In yellow catfish 

(Pelteobagrus fulvidraco), fucoidan 

administration led to decreased lipid 

peroxidation (Yang et al., 2014). 

Similar antioxidant effects were 

observed in zebrafish (Danio rerio) 

models and juvenile red sea bream 

(Pagrus major) when treated with 

fucoidan extracted from Ecklonia cava 

(Kim et al., 2014; Sony et al., 2019). 

These findings collectively highlight 

fucoidan's potential as an effective 

natural compound for managing 

oxidative stress in aquatic species. 
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4.3. Immunomodulatory, 

Antimicrobial, and Antiviral Activities   

Sulfated fucoidans have emerged as 

promising immunostimulants and 

functional feed supplements in aquatic 

farming systems, drawing considerable 

attention from both industry and 

researchers (El-Boshy et al., 2014; 

Peixoto et al., 2016). These marine 

polysaccharides potentiate macrophage 

activity, enhancing phagocytic capacity 

and lysozyme secretion (Choi et al., 

2005; Yang et al., 2008). Experimental 

evidence demonstrates that Sargassum 

fusiforme-derived polysaccharide 

supplements (0.1-0.5% inclusion) 

significantly increased muscular 

lysozyme activity in Fenneropenaeus 

chinensis (Huang et al., 2006). 

Comparable immunoenhancement has 

been documented in teleost species, 

where dietary fucoidan 

supplementation improved circulating 

lysozyme activity, serum protein 

profiles, and antioxidant capacity. 

Haematological parameters in 

both Pelteobagrus fulvidraco (Yang et 

al., 2014) and Pagrus major juveniles 

(Sony et al., 2019). 

Pathogen Inhibition and Immune 

Modulation 
The compound demonstrates notable 

antimicrobial efficacy against multiple 

aquatic pathogens (Immanuel et al., 

2012; Kitikiew et al., 2013). Its 

immunostimulatory mechanism 

involves dual activation of innate 

immune components (natural killer 

cells). Adaptive immune elements (T 

cells, dendritic cells) thereby establish 

robust antimicrobial defenses. Studies 

utilizing Sargassum polycystum-

extracted fucoidan revealed protective 

effects in Penaeus 

monodon against Escherichia 

coli, Staphylococcus aureus, 

and Vibrio harveyi infections 

(Chotigeat et al., 2004; Immanuel et 

al., 2012). Similarly, Turbinaria ornata-

sourced fucoidan exhibited inhibitory 

activity against Yersinia 

enterocolitica and Vibrio 

parahaemolyticus in ornamental 

marine species (Marudhupandi and 

Kumar, 2013). 

Disease Resistance Enhancement 

Beyond antimicrobial action, fucoidan 

(3% dietary inclusion) has shown 

immunopotentiating effects in 

Pangasianodon hypophthalmus (Prabu 

et al., 2016). Labeo rohita (Nazir et al., 

2017). Notably, Laminaria japonica-

derived fucoidan increased resistance 

in Clarias 

gariepinus against Aeromonas 

hydrophila challenge (El-Boshy et al., 

2014), while also improving growth 

performance and Vibrio 

parahaemolyticus resistance in Penaeus 

monodon (Sivagnanavelmurugan et al., 

2014). 

Antiviral Potential 

The sulfated polysaccharide presents 

antiviral properties with favourable 

toxicity profiles compared to synthetic 

antivirals. Its dual mechanism 

involves: Blocking viral entry. 

Suppressing viral replication (Mandal 

et al., 2007; Ponce et al., 2003). The 

sulfate moieties appear critical for 

immunostimulation against viral 

pathogens (Ponce et al., 2003). 

Practical applications include: 

Cladosiphon okamuranus fucoidan-

mediated protection of Marsupenaeus 

japonicus against WSSV (Takahashi et 

al., 1998). WSSV neutralization 

in Penaeus monodon via phagocytosis-

activating protein gene regulation 

(Deachamag et al., 2006). 

5. Applied Research on Fucoidan in 

Egyptian Aquaculture   

Table 2 summarizes key research 

articles and reviews on fucoidan in 

Egypt, providing valuable insights for 

future studies. These works highlight 
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fucoidan's potential as a sustainable 

feed additive to enhance growth, 

immunity, and disease resistance in 

aquaculture species.

 

Table 2. Applied research on Fucoidan in aquaculture in Egypt. 

Research subject Type of research  Reference 

The anticancer activity  Experimental study  (Al-Duais et 

al., 2025) 

Seed treatment with macroalgal-derived fucoidan and nanohydroxyapatite mitigates  Experimental study  (Gomaa et al., 

2025) 

Protective Effects against Osteoarthritis  Experimental study  (Chiang et al., 

2024) 

preparation, evaluation, and cytotoxicity study Review article  (Obiedallah et 

al., 2024) 

Anti-Inflammatory, Antidiabetic,  Experimental study  (Deaconu et 

al., 2024) 

The Antioxidant and Anti-Inflammatory Properties  Experimental study  (Brezoiu et 

al., 2024) 

Recent biotechnological applications  Review article  (Eladl et al., 

2024) 

Optimizing the fucoidan extraction  Experimental study  (El-Sheekh et 

al., 2024) 

Fucoidan in Delivery Systems Review article  (Haggag et al., 

2023) 

Fucoidan's Molecular  Review article  (Zayed et al., 

2023) 

Treat gastric ulcer injury through managing inflammation. Experimental study  (Selim et al., 

2023) 

Fucoidan as probiotic  Review article  (Elwakil et al., 

2023) 

Chemical Composition, Antioxidant, and Antitumor Activity  Experimental study  (El-Sheekh et 

al., 2023) 

Antiangiogenic drugs  Experimental study  (Abdollah et 

al., 2023) 

A spectroscopic response  Experimental study  (Abdella et 

al., 2023) 

Characterization and Cytotoxic Activity  Experimental study  (Zayed et al., 

2023) 

Selective 2-desulfation of tetrasaccharide-repeating sulfated fucans  Experimental study  (Kim et al., 

2022) 

The Sea Cucumber Thyonella gemmata  Experimental study  (Dwivedi et 

al., 2023) 

https://pubmed.ncbi.nlm.nih.gov/40148777/
https://pubmed.ncbi.nlm.nih.gov/38786602/
https://pubmed.ncbi.nlm.nih.gov/38786602/
https://pubmed.ncbi.nlm.nih.gov/38999074/
https://pubmed.ncbi.nlm.nih.gov/38397847/
https://pubmed.ncbi.nlm.nih.gov/39312045/
https://pubmed.ncbi.nlm.nih.gov/36827153/
https://pubmed.ncbi.nlm.nih.gov/38248653/
https://pubmed.ncbi.nlm.nih.gov/37201406/
https://pubmed.ncbi.nlm.nih.gov/37534219/
https://pubmed.ncbi.nlm.nih.gov/37534219/


Journal of Current Veterinary Research, Volume (7), issue (2), October 2025 

 

627 
 

Fucoidan/hyaluronic  Experimental study  (Moustafa et 

al., 2023) 

Health benefits and potential applications of fucoidan  Review article  (Abdel-Latif 

et al., 2022) 

Expression and Biochemical Characterization  Experimental study  (Qiu et al., 

2022) 

Effect against Enterococcus faecalis  Experimental study  (Tang et al., 

2022) 

Sulfated Galactofucans Review article  (Zayed et al., 

2022) 

In Vitro Evaluation and In Vivo Anti-Inflammatory Study Experimental study  (Abdelkader 

et al., 2022) 

Curative effects of fucoidan on acetic acid-induced ulcerative colitis  Experimental study  (Bagalagel et 

al., 2022) 

The prospective effect of fucoidan on splenic dysfunction  Experimental study  (Basha et al., 

2022) 

Anticancer, Enhanced Antibacterial, and Free Radical Scavenging Potential of 

Fucoidan-  

Experimental study  (Rajeshkumar 

et al., 2021) 

Comparison & Antioxidant Activity of Different Molecular Weight Fractions Experimental study  (Yu et al., 

2021) 

Synthesis of nanoparticles and their potential applications Review article  (Yosri et al., 

2021) 

In vitro biological activities and in vivo hepatoprotection  Review article  (Atya et al., 

2021) 

Fucoidan ameliorates acute and sub-chronic in vivo toxicity  Experimental study  (Mahgoub et 

al., 2021) 

Growth Behavior and Blood Metabolites and Toxic Effects  Experimental study  (Abdel-

Warith et al., 

2021) 

Modulates hepato-renal oxidative stress and DNA damage  Experimental study  (Abdel-Daim 

et al., 2020) 

Growth and metastasis of pancreatic cancer Experimental study  (Etman et al., 

2020) 

Protection against damage in cardiac, hepatic, and renal tissues Experimental study  (Abdel-Daim 

et al., 2020) 

Hepatocellular Carcinoma  Experimental study  (El-Far et al., 

2020) 

Purity, Physicochemical & Chemical Properties Review article  (Zayed et al., 

2020) 

The effect on growth performance, intestinal pathology, and antioxidant  Experimental study  (Mahgoub et 

al., 2020) 
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Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries  Experimental study  (Aleissa et al., 

2020) 

the impact of abiotic stress  Experimental study  (El-Katony et 

al., 2020) 

Downstream Processes and Recent Applications Review article (Zayed et al., 

2020) 

Effects on the hematic indicators and antioxidative responses  Experimental study  (Abdel-Daim 

et al., 2020) 

Chitosan-toluidine blue beads for purification of fucoidans Review article (Abdella et 

al., 2019) 

A natural biopolymer in cancer combating Experimental study  (Etman et al., 

2019) 

Molecular Mechanisms  Reviewarticle (Sajadimajd 

et al., 2019) 

Challenges and opportunities Review article (Zayed et al., 

2019) 

Induced hepatic, renal, and cardiac oxidative stress and inflammatory injuries  Experimental study  (AlKahtane et 

al., 2019) 

Treatment of pancreatic cancer Review article (Etman et al., 

2019) 

Physicochemical Comparison properties  Experimental study  (Lu et al., 

2018) 

Antioxidant properties  Experimental study  (Hifney et al., 

2018) 

Physicochemical and Biological Characterization  Experimental study  (Zayed et al., 

2016) 

Suppressing oxidative stress and inflammatory cytokines  Experimental study  (Heeba et al., 

2015) 

Enhancement the non-specific immune response and disease resistance  Experimental study  (El-Boshy et 

al., 2014) 

CONCLUSIONS AND 

RECOMMENDATIONS 

Brown seaweeds represent a rich 

marine resource containing numerous 

bioactive compounds, particularly 

sulfated polysaccharides like fucoidan 

(FCD). This comprehensive review 

examines FCD's biological activities 

and explores its potential as a 

functional aquafeed ingredient for 

finfish species. Our analysis highlights 

FCD's growth-promoting, antioxidant, 

and immunostimulant properties in 

fish, with special emphasis on 

Egyptian aquaculture research. 

Additionally, we detail critical aspects 

of fucoidan production, extraction 

methods, and structural characteristics 

from brown seaweeds. This review 

serves to promote awareness of brown 

algal fucoidans as both a valuable 

research subject and a sustainable 

material for industrial applications in 

aquaculture and beyond. The findings 

underscore the need for further 
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research to unlock FCD's full potential 

as a natural alternative in animal 

nutrition and health management. 
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